
AD-Allft 983 GEORGIA INST OF TECH ATLANTA SCHOOL OF INFORMATION A;ETC FIG 9/2
PERFORMANCE OF DISTRIBUTED AND DECENTRALIZED CONTROL MooEL.S FOR--ETClU)
MAT 82 P H ENSLOW. T G SAPONAS F30602-78C-0120

UNCLASSIFIED GIT-ICS-81/09 RADC-TR-82-105 NL'EEEEdhh
EEEmhmhohEEEEI

Mf=W PERFIJRNCEUFISRIUE

~low

.mu~~~mu mumiut f ebwi

~~mI~~~p H. t#li-wJ.edfmh .5puu

- - MDX DQ2

-82

-- IN

F-,~~ 1ARIC

APMUM:-r-

Asdject Chief W..T

4,

Wt

'60, J. 3" ~ It&,C~~e~UA

.. ~- A

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Datt.Entered),
i RPOR DOUMETATON AGEREAD INSTRUCTIONS

V.EOTDCMNAINPG BE[FORE
"

COMPLEI[NG FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE[(and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

PERFORMANCE OF DISTRIBUTED AND DECENTRALIZED Final Technical Report

CONTROL MODELS FOR FULLY DISTRIBUTED PROCESSING 1 July 80 - 30 June 81

SYSTEMS - Initial Simulation Studies 6. PERFORMINGO01. REPORT NUMBER

7. AUTHOR(&) S. CONTRACT OR GRANT NUMSERi()

Philip H. Enslow, Jr.

Timothy G. Saponas F30602-78-C-0120

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Georgia Institute of Technology AREA A WORK UNIT NUMBERS

School of Information and Computer Science 31011G

Atlanta GA 30332 R24401P2

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Rome Air Development Center (COTD) May 19 2

Griffiss AFB NY 13441
110

Ia. MONITORING AGENCY NAME & AOORESS(I different front Controllin Office) IS. SECURITY CLASS. (of this report)

Same UNCLASSIFIED
ISa. DECLASSIFICATION/DOWNGRADING

N/A SCEOULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, It different froe. Report)

Same

I. SUPPLEMENTARY NOTES

RADC Project Engineer: Thomas F. Lawrence (COTD)

19. KEY WORDS (Continue on rever&e side if neceeary mid Identify by block numtber)

Control Network Operating System

Decentralized Control

Distributed Processing

Fully Distributed Processing Systems

0. ABSTRACT (Continue on reverse side It neceseeary nd Identify by block number)

essential component of a Fully Distributed Processing System (FDPS) is
the distributed and decentralized control. This component unifies the

management of the resources of the FDPS and provides system transparency

to the user. In a previous study, the problems of distributed and
decentralized control were analyzed resulting in the specification of

several control models. This study continues that work by further specify

ing the control models defined in the first report and comparing the -

DD I , AN 73 1473 EDITION OF I NOV SS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whan DOI& Entered)rA

UNCLASSIFIED

SIRCUIHTy CLASWIF|CATION OP THiS PAGe(fIn Date atwmd)

'performance of these models in various environments. This performance
analysis was accomplished by means of simulation experiments. The resultsI. of the experiments indicate that the control message traffic generated by
the distributed and decentralized control is much less than expected and
probably does not present a barrier to the implementation of FDPS's.
Comparison of the results of the simulation of a uniprocessor and that of
an FDPS indicate that little or no loss of performance is experienced by
the FDPS. An important limitation of these initial performance studies is
the fact that user traffic was not included in this series of tests.

Accession For

NTIS GRA &I
DTIC TAB
Unannouaeed Q1
Justitieation

BV
Distribution/

Availability Codes
Avall and/or

Dist Special

UNCLASSIFIED

SRCURl lV CLASSIFICATION Oft T-- PAGEeft.. Does EnqtrMd)

Page iii

The simulation results that are discussed in this report represent the

findings obtained during the period of the grant, 1 July 1980 - 30 June

1981. Further simulation studies have been conducted and will be

documented in a Ph.D. thesis by Timothy G. Saponas entitled "Distributed

and Decentralized Control in a Fully Distributed Processing System,"

which is to be published in the near future.

Page v

Section 1. INTRODUCTION .. 1

Section 2. BACKGROUND ... 5

.1 THE DEFINITION OF AN FDPS 5
.1 Multiple Resources and Their Utilization 5
.2 Component Interconnection and Communication 6
.3 Unity of Control .. 7
.4 Transparency of System Control 7
.5 Cooperative Autonomy ... 8

.2 CHARACTERIZATION OF DISTRIBUTED AND DECENTRALIZED CONTROL 8
.1 General Nature of FDPS Executive Control 8
.2 Control Problems Resulting from the FDPS Environment 8
.3 Why Not Centralized Control? ... 10
.4 Distributed vs. Decentralized .. 11
.5 Rationale Behind Distributed and Decentralized Control 11

.3 EVALUATION PLAN .. . 11
.1 Definition of Control Models ... 12
.2 Construction of an FDPS Simulator 12
.3 Simulation Experiments .. 13
.4 Validation of Control Models ... 13
.5 Comparison of the Relative Performance of the Models................. 13

.4 PROJECT SCOPE AND ORGANIZATION OF THIS REPORT 14

Section 3. MODELS OF CONTROL .. 17

.1 THE XFDPS. 1 CONTROL MODEL 17
.1 Task Set Manager .. 17
.2 File System Manager ... 20
.3 File Set Manager 20
.4 Process Utilization Manager .. 20
.5 Processor Utilization Monitor .. 21
.6 Process Manager .. 21
.7 File Process ... 21

.2 THE XFDPS.2 CONTROL MODEL .. 22
.3 THE XFDPS.3 CONTROL MODEL .. 22
.4 THE XFDPS.4 CONTROL MODEL .. 22
.5 THE XFDPS.5 CONTROL MODEL 23
.6 THE XFDPS.6 CONTROL MODEL ... 23

Section 4. THE SIMULATOR 25

.1 REQUIRENTS FOR THE SIMULATOR .. 25

.2 THE STRUCTURE OF THE SIMULATOR ... 26
.1 Architecture Simulated 26 j

* Page vi

.2 Local Operating System26

.3 Message System28

.41 Input for the Simulator. to *. 31

.2 Network Configuration..31

.3 Work Requests * *.*. 32

5 Taskjet ande Process.. Maog. 1
.6 Loa Gieerat .o 384

Setin5 The Simulato eXPERIMENTS.....o...... 14*-*--39

1 de MATI e ...I....ENT....... .* 113
.21 EniMetal Variables.....*....... .. o & s..*..

.2 Enironenytal o...s...4

.2 GROUP 1 e EXERMnT rssae..... o............ 17

.6 oratioens...or..... o.1
.3 GOPro2ac EPRMeaNTSe.ens *50

1eton5 THE nIoMeLTNt.......................... 513

I SIHGE NODEATINWR E XERMENTSo... 43 .1
.1Th Environmentbe... 511
.2 Observamt Co..... o.....4~~ o. .. 5

.2 QRULIAIEPECETS OF.THE.....L.............................. %.....547

Seto.1 FUTREn EXPERIMENS..s .. %..o.....t...... *** 5

.2OsrainL......................t,... ..4

Page vii

Appendix 1. CONTROLMNODEL PSEUDO CODE 63

.1 PSEUDO CODE FOR THE XFDPS.1 CONTROL MODEL......................... 63
.1 Systea~initiator... 63
.2 Task Set Manager 63
.3 File System Manager.. 65
.4 Processor Utilization Manager. * . .. * 67
.5 Processor Utilization Monitor 68
.6 Process Manager 68
.7 File Set Manager... 69

.2 PSEUDO C OREFTH E XFDP CNRO OD.................71
.1 System Initiator..71
.2 Task Set Manager 7T1
.3 File System Manager .. 71
.~4 Process Utilization Manager 73
.5 Processor Utilization Monitor 73
.6 Process Manager..................... * 73

.3 PSEUDO CODE FOR THE XFDPS.3 CONTROL MODEL 73

.2 Task Set Manager ... 73

.3 File System Manager 73

.4 Process Utilization Manager 74

.5 Processor Utilization Monitor 74

.6 Process Manager... 74

.7 File Set Manager * 74
.4 PSEUDO CODE FOR THE XFDPS.4 CONTROL MODEL 7

.2 Task Set Manager................................... 74
.3 File System Manager* .* .. * 74
.4 Process Utilization Manager 76
.5 Processor Utilization Monitor. 76
.6 Process Manager. 76

.5 PSEUDO CODE FOR THE XFDPS.5 CONTROL MODEL *............ 76
.1 System Initiator 76

.3 File System Manager 77

.4 Process Utilization Manager....... %9.99999....99.99..99.99...999 .

.5 Processor Utilization Monitor............................... 7

.6 Process Manager 99......9 *** ..9..99 , ... o......... 77

.7 File Set Manager..9...........99...9... * 77
.6 PSEUDO CODE FOR THE XFDPS.6 CONTROL MODEL*..... 77

.1 System Initiator. 77

.2 Task Set Manager. 99........99*9.........99 .999.9.999.999.997

.3 File System Manager... 999..9..9.99... 99999.99999999.999.9.... 77
.4 Process Utilization Manager...........*- . ..* s 9......78
.5 Processor Utilization Monitor. *78

Page vii

.6 Process Manager **

Appendix 2. SIMULATION RESULTS.81

.1 RESULTS OF GROUP 1 EXPERIMENTS*..... oooo.... 8

.1 XFDPS.1 #.......%.....o..o..o...t......8

.2 XFDPS.2o.. .. o ... * ~ o ****** ****** **. to*.to . .. 083

A 2 XFDPS.4ooI o ... to ** o ** ****. . 87

.2 RESULTS OF GROUP 2 EXPERIME~NTS_9*. 89

.24 XFDPS.2..... ..o. ... o............. 9

.3 RESULTS OF ASINGLE NODE SIMLATIONo..oo..96

Page ix

!

LXI

Figure 1: The XFDPS.1 Model of Control...................................... 18
Figure 2: Simulated Node27
Figure 3: Process Queues on Each Node 29
Figure 4: Message Queues on Each Node 30
Figure 5: Syntax of FDPS Configuration Input for the Simulator 33
Figure 6: Work Request Syntax ... 34
Figure 7: Example of a Work Request 36
Figure 8: Syntax of Work Request Population Input to the Simulator 37
Figure 9: Syntax of Command File Input to the Simulator 38
Figure 10: Syntax of Object File Input to the Simulator 39
Figure 11: Syntax of Data File Input to the Simulator 40
Figure 12: Network Interconnection Topologies44
Figure 13: The Script Utilized by all Processes 4T
Figure 14: Comparison of Response Times for Group 1 Experiments (part 1) 48
Figure 15: Comparison of Response Times for Group I Experiments (part 2) 49
Figure 16: Example of Loads Presented to Two Nodes 51
Figure 17: Sequence of Work Request Arrivals When Using Model 1 52
Figure 18: Sequence of Work Request Arrivals When Using Model 2 52

hi

Page x

L=D ZA=K

Table 1: 'Benefits' Provided by Distributed Processing Systems 1
Table 2: Physical Configuration Input to the Simulator 32
Table 3: Comparison of the Control Models 46

I 4

Section 1 INTRODUCTION Page 1

SECTION 1

INTRODUCTION

Distributed Processing Systems are currently receiving a very large

amount of attention. This is due in part to the claims that these systems

will provide a number of advantages over contemporary systems (see Table 1).
Some of the more important potential advantages being publicized are the fol-

lowing: increased performance (with respect to both throughput and response
time), ability to share resources, ease of system expansion, and the ability

to provide fault-tolerance.

Table 1. "Benefits" Provided by Distributed Processing Systems

A Representative List Assembled from Claims Made in
Actual Sales Literature

High Availability and Reliability

Reduced Network Costs

High System Performance

Fast Response Time

High Throughput

Graceful Degradation, Fail-soft

Ease of Modular and Incremental Growth

Configuration Flexibility

Automatic Load and Resource Sharing

Easily Adaptable to Changes in Workload

Incremental Replacement and/or Upgrade

Easy Expansion in Capacity and/or Function

Good Response to Temporary Overloads

This report is concerned with a particular class of distributed proces-

SIt

Page 2 INTRODUCTION Section 1

sing systems, *Fully Distributed Processing Systems (FDPS)," which are the

focus of a major research program at the Georgia Institute of Technology. For

a system to be classified as an "FDPS," it mAt pse All fl= of the fol-

lowing characteristics:

1. Muliplicit gr .r&Azrgf: an FDPS is composed of a mul-
tiplicity of "general-purpose" resources that can be freely
assigned on a short-term basis to various system tasks as
required (e.g., hardware and software processors, shared data
bases, etc.).

2. o tinterconnection: the active components in the FDPS
are physically connected by a communication network(s) utiliz-
ing two-party, cooperative protocols to control the physical
transfer of data (i.e., loose physical and logical coupling).

3. Untog ontrol: the executive control of an FDPS must define
and support a unified set of policies governing the operation
and utilization of all physical and logical resources.

4. System JA2A2ArM=: users must be able to request services by
generic names without being aware of their physical location or
even the fact that multiple copies of the resources may exist.

(System transparency is designed to aid rather than inhibit
and, therefore, can be overridden. A user Vi o is concerned
about the performance of a particular application can provide

system-specific information to aid in the formulation of
management control decisions.)

5. Con22nean atonoxa: both the logical and physical components
of an FDPS should interact in a manner described as
"cooperative autonomy" lEnsl78]. This means that the com-
ponents operate in an autonomous fashion requiring cooperation
among processes for the exchange of information as well as for
the provision of services. In a cooperatively autonomous

control environment, the components are afforded the ability to
refuse requests for service, regardless of whether the service
request involves execution of a process or the use of a file.
This could result in anarchy except for the fact that all com-
ponents adhere to a common set of system utilization and
management policies expressed by the philosophy of the
executive control.

A more detailed explanation of these characteristics is found in Section 2 of

this report.

An essential component of an FDPS is the distributed and decentralized

control. This component unifies the management of the resources of the FDPS

and provides system transparency to the user. A previous study (see [Ensl81])

examined the characteristics of various models of distributed and

decentralized control that met this criteria and identified a number of

!2Section 1 INTRODUCTION Page 3

variations possible in specific features of the different models. That
research helped to define more clearly the exact nature of the operation of an

FDPS, the problems inherent in distributed and decentralized control, and pos-

sible solutions to these problems.

The scope and goal of the present work is to both qualitatively and

quantitatively evaluate the effect of these features on the performance of the
various models of control. The qualitative evaluation is intended to

demonstrate how a particular model performs in a specific environment. In
this phase, the validity of a model is established. The quantitative

evaluation, on the other hand, is intended to examine in general the relative
merits of decentralized control and provide data to support conclusions about

the relative performance of the various models.

,!i

Section 2 BACKGROUND Page 5

SECTIONl 2

BACKGROUND

2.1 = DEFINT O DaR

Fully Distributed Processing Systems (FDPS) were first defined by Enslow

in 1976 [Ensl78] although the designation "fully" was not added until 1978

when it became necessary to clearly distinguish this specific class of systems

from the many others being presented as "distributed processing systems." As

discussed in Section 1, an FDPS is distinguished by the following charac-

teristics:

1. Multiplicity of resources.

2. Component interconnection.

3. Unity of control.

4. System transparency.

5. Component autonomy.

It is important to note that in order for a system to qualify as being

fuliy distributed it s Dossess a11 fixe of the criteria presented in this

definition.

2.1.1 Multinle Resources Aad TheirUtlzation
The requirement for resource multiplicity concerns the assignable

resources that a system provides. Therefore, the type of resources requiring

replication depends on the purpose of a system. For example, a distributed

system designed to perform real-time computing for air traffic control

requires a multiplicity of special-purpose air traffic control processors and

display terminals. It is not required that replicated resources be exactly

homogeneous; instead, they must be capable of providing the same services.

In addition to the requirement for multiplicity, the system resources

must be dynamically reconfigurable to respond to component failures as well as

changes in the work load presented to the system. This reconfiguration must

occur within a "short" period of time so as to maintain the functional

capabilities of the overall system without affecting the operation of com-

ponents not directly involved. Under normal operation, the system must be

able to dynamically assign its tasks to components distributed throughout the

system.

- FzmC1G PAc LAoE-aw 7LUD
w " '1. , . , t', ~III

Page 6 BACKGROUND Section 2

The extent to which resources are replicated can range from those

systems where none are replicated (nt a fully distributed system) to systems

with all assignable resources replicated. In addition, the number of copies

of a particular resource can vary depending on the system and type of

resource. In general, the greater the degree of replication, particularly of

resources in high demand, the greater the potential for attaining benefits

such as increased performance (response time and throughput), availability,

reliability, and flexibility [Ensl78].

2.1.2 m Interconnection an f

The extent of physical distribution of resources in distributed systems

can range from the length of a connection between components on a single

integrated chip to the distance between two computers communicating through an

international network. In addition, interconnection subsystem organizations

can vary from a single time-shared bus to a complex, mesh interconnection

network. Since a component in a distributed system communicates with other

components through its own logical process, all physical and logical resources

can be thought of as processes, and interactions between resources can be

referred to as interprocess communication [Davi79]. For example, application

program interaction with data files is accomplished through communication

between logical processes, the application process and the file process.

In an FDPS, both the physical and logical coupling of the system com-

ponents are characterized as "extremely loose." "Gated" or "master-slave"

control of physical transfers is not allowed. Communication (i.e., the

physical transfer of messages) is accomplished through the active cooperation

and participation of both the sender and addressees. The primary requirement

of the interconnection subsystem is that it support such a two-party

cooperative protocol. This is essential to enable the system's resources to

exist with "cooperative autonomy" at the physical level.

The advantages of using a message-based (loosely-coupled) communication

system with a two-party cooperative protocol include reliability,

availability, and extensibility. The disadvantage is the additional overhead

of message processing incurred to support this method of communication. There

are a variety of interconnection organizations and communication techniques

that can be used to support a message-based system with a two-party

Section 2 BACKGROUND Page 7

cooperative protocol.

In a fully distributed data processing system, individual processors

will control local resources with their own local operating systems, which may

or may not be unique. As a result, control is distributed throughout the

system to control system components that operate autonomously. However, to

gain the benefits of distributed processing, it is required that the

autonomous components of the system cooperate with each other to achieve the

overall objectives of the system. To insure this, the concept of a high-level

operating system was created to integrate and unify, at least conceptually,

the decentralized control of the system.

A high-level operating system is essential to the successful implementa-

tion of a distributed processing system. The high-level operating system is

not a centralized block of code exercising strong hierarchical control over

the system; instead, it is a well-defined set of policies governing the

integrated operation of the system as a whole. To insure reliable and

flexible operation of the system, these policies should be implemented with

minimal binding to any of the system's components [Ensl78].

What policies are required and how they should be implemented depends

greatly on the system. For example, if it is a general-purpose system sup-

porting interactive users, then a command interpreter and a user control

language is required to make the system's components compatible and

transparent to the user.

2.1.4 ranarmnny . .y&s&a Conlrol

The high-level operating system also provides the user with an interface

to the distributed system. As a result, the user is accessing the system as a

whole rather than just a single computer in the network.

In order to increase the effectiveness of the distributed system, the

actual system organization is made transparent. The user is presented with a

virtual machine and a command language to access it. Using this command

language, the user requests services by name and does not need to specify the

specific server to be used. Clearly, multiple requests for the same service

might be assigned to different servers depending on the state of the total

system when the request is made. However, to make the system truly effective

II

Page 8 BACKGROUND Section 2

for all users, knowledgeable individuals must be able to interact with the

system more directly, requesting specific servers or developing service

routines to increase the efficiency or effectiveness of the system [Ensl78].

2.1.5 CoonnrativeAgtonomv

Cooperative autonomy has already been described at the physical inter-

connection level. It is also required that all resources be autonomous at the

logical control level. A resource must have complete control in determining

which requests it will service and what future operations it will perform.

However, a resource must also cooperate with other resources by operating

according to the policies of the high-level operating system. Cooperative

autonomy is an essential prerequisite for systems to have fault tolerance and

high degrees of extensibility [Ensl78]. It is perhaps the most important and

most distinguishing characteristic of a fully distributed processing system.

2.2 CHAACTERIZATIQ OFISTIBUV AND CO OLQ

2.2.1 feMera BatLur gf Z= Exutive Contr o
The executive control is responsible for managing the resources of the

FDPS. Its charter is to perform the management function in such a manner that

the resources of the FDPS are unified and users of the FDPS are shielded from

the physical realities of distribution. In other words, the executive control

provides system transparency for the user.

The executive control of an FDPS can be implemented in many different

ways. It can consist of identical modules replicated on all nodes of the

system. Alternatively, it can consist of several unique modules distributed

in some manner about the system. The essential point is that the term

"executive control' does not necessarily mean a particular module at a

particular node, but rather the entire collection of modules that are

distributed somehow throughout the system and are working together to manage

the system's resources.

2.2.2 " Control fgraIM&ma Raa u.tJC. f Mr-a .tb DPS nat

Several characteristics of an FDPS are found to directly impact the

design and implementation of the executive control. These include system

transparency to the user, extremely loose physical and logical coupling, and

cooperative autonomy as the basic mode of component interaction. System

Section 2 BACKGROUND Page 9

transparency means that the FLPS appears to a user as a large uniprooessor

which has available a variety of services. It must be possible for the user

to obtain these services by naming them without specifying any informatlon

concerning the details of their physical location. The task of locating all

appropriate instances (copies) of a particular resource and choosing the

instance to be utilized is left to the executive control.

"Cooperative autonomy" is another characteristic of an FDPS that has a

large effect on the design of the executive control. The "lower-levelw

control functions of both the logical and physical resource components of an

FDPS are designed to operate in a "cooperatively autonomous" fashion. Thus,

the executive control must be designed such that any resource is able to

refuse a request even though it may have physically accepted the message

containing that request. Degeneration into total anarchy is prevented by the

establishment of a common set of criteria to be followed by all resources in

determining whether a request is accepted and serviced as originally

presented, accepted only after bidding or negotiation, or rejected.

Another important FDPS characteristic that definitely affects the design

of its executive control is the extremely loose coupling of both physical and

logical resources. The components of an FDPS are connected by communication

paths of relatively low bandwidth. The direct sharing of primary memory

between processors is not acceptable. Even though the logical coupling could

still be loose with this physical interconnection mechanism, the presence of a

single critical hardware element, the shared memory, would create fault-

tolerance limitations. Therefore, all communication takes place over "stan-

dard" input/output paths. The actual data rates that can be supported are

primarily a function of the interconnections between the processors and the

capability of their input/output paths. The available transfer rates are much

less than memory transfer rates. This implies that the sharing of control

information among components on different processors is greatly restricted.

System control is forced to work with information that is "out-of-date" and,

as a result, perhaps "inaccurate."

The control of an FDPS requires the participation and cooperation of

components at all layers of the system. This implies that there are elements

of FDPS control present in the lowest levels of the hardware and software com-

.... °

Page 10 BACKGROUND Section 2

ponents. This study is primarily interested in the software components of the

FDPS control which are typically referred to as "the executive control." Low-

level aspects of FDPS control will not be directly examined.

The executive control is responsible for managing the physical and

logical resources of a system. It accepts user requests and obtains and

schedules the resources necessary to satisfy a user's needs. The manner in

which these tasks are accomplished is designed to unify the distributed com-

ponents of the system into a whole and provide system transparency to the

user.

2.2.3 WhX 11o. .trariUud CQ
Why is a centralized method of control not appropriate? In systems

utilizing a centralized executive control, all of the control processes share
a single, coherent, and accurate view of the entire system state. An FDPS,

though, contains only loosely-coupled components, the communication between
which is limited and subject to variable time delays. This means that one

cannot guarantee that all control processes will have the same view of the

system state [Jens78]. In fact, it is a significant characteristic of an FDPS

that all control processes will probably not have a consistent view.

A centralized executive control weakens the fault-tolerance of the
overall system due to the existence of a single critical element, the

executive control component itself. This obstacle, though, is not

insurmountable. Strategies do exist for providing fault-tolerance in

centralized applications. Garcia-Molina [Garc79], for example, has described

a scheme for providing fault-tolerance in a distributed data base management

system with a centralized control. Approaches of this type typically assume

that failures are extremely rare events and that the system can tolerate the

dedication of a relatively long interval of time to reconfiguration. These

restrictions may be unacceptable in an FDPS environment in which it is

important to provide fault-tolerance with a minimum of disruption to the ser-

vices being supported.

Also, the extremely important issue of overall system performance must

be considered. A distributed processing system is expected to utilize a large

quantity and a wide variety of resources. If a completely centralized

eeutive control is Implemented, there is a high probability that a

Section 2 BACKGROUND Page 11

bottleneck will be created in the node executing the control functions. A

distributed and decentralized approach to control attempts to remove this bot-

tleneck by dispersing the control decisions among multiple components on

different nodes.

2.2.~4 Din tdxyA. Decntalze

The discussion above supports the requirement that the executive control

of an FDPS must be both "distributed" and "decentralized," and it should be

noted that there is a clear distinction between the terms "distributed

control" and "decentralized control" as they are used in the context of this

project. "Dltributed control" is characterized by having its excuiang

cmnn pn l nodes. This means there are

mutiple 9f control &otivZ. In "decentraliz ontrol," on the other
hand, tre si4 indeendentlv bX separae c. In

other words, there are multiple o= of control Atgj= jMLki=. Thus,

distributed and decentralized control has active components located on

different nodes, and those components are capable of making independent

control decisions.

2.2.5 Rational e iD -bs Diatriad A= DaanuetJraal d Coi
The reasons for distributing and decentralizing control result from two

basic goals of an FDPS, to improve performance and to provide a more fault-

tolerant system. With decentralized decision making, a system can potentially

provide responses to requests in a shorter amount of time due to the increased

utilization of resources which is achieved through the concurrent execution of

the decentralized decision makers.

By physically distributing components, one is assured that a system

retains the potential to keep running even though some parts have been lost.

The ability to function independently of the lost components is provided by

decentralized decision making. Thus, by distributing components and

decentralizing decision making, the potential for fault-tolerant operation is

provided.

2.3 ALUA IT ZIJM

The steps performed in the evaluation of the models of control are as

641
follows: A

..

Page 12 BACKGROUND Section 2

1. Prepare detailed definitions of the models of control.
2. Construct an FDPS simulator.

3. Perform the simulation experiments.

4. Validate the control models.

5. Compare the relative performance data for the different control
models.

2.3.1 2991== .L .ontr. l MdeUa
The first step in the evaluation process is to define in greater detail

the models of control originally described in lEnsl81]. One of the goals of
the present research is to validate the control models in order to examine

their performance in certain environments. By looking at the finer details of

the models, significant control problems have been discovered which were not

apparent from earlier high level studies.

To accomplish this detailed study, the models are translated into a high

level programming language, Pascal. The resulting code is presented in Appen-

dix 1 in the form of pseudo code. The pseudo code is derived from the actual

Pascal code and is presented in place of the actual code in order to conserve

space.

2.3.2 Construction .tAA I= A.1aJatr
In order to perform both validation and performance analysis it is

necessary to construct an FDPS simulator. The models of control are

translated into Pascal, and the resulting code is incorporated into the

simulator. Validation is accomplished by constructing various test cases

which are designed to exercise the particular executive control functions

being tested. A detailed transaction log is maintained in order to follow the

actions of the simulator, and, thus, verify the corrent or incorrect per-

formance of each portion of the executive control.

The simulator also collects various performance measurements. These are

processed at the termination of the experiment in order to generate per-

formance statistics. The interval during which measurements are collected is

user controllable. This allows one to measure steady state values as well as

performance during startup.

Section 2 BACKGROUND Page 13

2.3.3 RlualnFx~rja,

Simulation experiments are conducted in two phases. The first phase is

designed to validate the various models of control. In these experiments,

there is no need to collect performance measurements; instead, a detailed log

of the simulator's actions is maintained. This is then analyzed in order to

observe the behavior of the control model under test.

In the second phase of experiments, performance measurements are collec-

ted, but no transaction log is maintained. These experiments are used to

obtain data concerning the relative performance of the various models of

control. In order to obtain steady state data, measurements are not collected

until some time after startup. Several simulations are performed on each

model of control. Each simulation provides the control with a different

environment. To obtain different environments, the interconnection topology

and the bandwidths of the communication links are varied.

The load for the simulator is generated in the following manner. The

user specified configuration determines the number of nodes, the connectivity

of these nodes, the number of terminals attached to each node, and the initial

state of the file system. The file system includes data files, command files,

and object files. Each object file specifies a script of actions to be

simulated in order to simulate the execution of a user process. The user of

the simulator provides a series of commands that can originate from a

terminal. These commands form a population of commands from which the load

generator randomly selects commands for arrival from specific terminals. The

time of command arrival is determined by generating a random number from a

particular interval marked by a minimum and a maximum time delay between sub-

mission of commands.

2.3.4JAJdLJ Ya4 1 g Contro Models
Validation of the models of control is achieved by constructing input

scripts designed to excercise the particular executive control being tested.

The resulting transaction log is analyzed to insure the correct performance of

the executive control.

2.3.5 f guMRrJat n.ho Relative La Q~da ig a
After each test, the data reduction portion of the simulator utilizes

the performance measurements gathered during the specified interval of time to

Page 14 BACKGROUND Section 2

compute the following statistics:

1. The average service time for a user session, for a work
request, and for a process. (This is computed for all nodes
and also averaged over all nodes.)

2. The average response time for a user session, for a work
request, and for a process. (This is computed for all nodes
and also averaged over all nodes.)

3. The throughput for user sessions, for work requests, and for
processes. (This is computed for all nodes and also averaged
over all nodes.)

4. For the READY QUEUE on each node, the MESSAGE BLOCKED QUEUE on

each node, each DISK WAITING QUEUE on each node, and each LINK
QUEUE on each node the following statistics are compiled:

a. The minimum time spent by a process in the
queue.

b. The maximum time spent by a process in the
queue.

c. The average time spent by a process in the
queue.

d. The minimum queue length observed by a process
entering the queue.

e. The maximum queue length observed by a process
entering the queue.

f. The average queue length observed by a process
entering the queue.

5. The number of user messages, control messages, and the total
number of messages sent from each node to every other node.

6. The number of user messages, control messages, and the total

number of messages sent on each link.

Utilizing these statistics, conclusions concerning the relative merits

of each of the models of control are made.

2.4 PRE & QSCOPR An DETI = EI

Following these first two sections of introductory remarks, this paper

examines in finer detail the models initially presented In [Ensl81]. Section

3 contains a description of the more important features of the control models

under examination. A pseudo code description of these models is provided in

Appendix 1.

The simulator used in the evaluation of the models is the topic of

discussion in Section 4. In this section, the goals of the simulation

experiments, requirements for the simulator, and the structure of the

simulator are discussed.

Section 2 BACKGROUND Page 15

In Section 5, the results of the simulation experiments are examined.
This includes discussions of both the validity of the models in certain

environments and the relative performance of the various models of control.

Conclusions about the results of the evaluation studies are presented in
Section 6. The results of these experiments are summarized and placed into

proper perspective and further questions that this study stimulated but failed

to answer are identified.

i

II

tI
Section 3 MODELS OF CONTROL Page 17

SECTION 3

MODELS OF CONTROL

This research considers six different models of control. These models

are described in general terms in this section, and pseudo code for the models

is provided in Appendix 1. The models are similar in many respects differing

usually only in some particular aspect of control. Therefore, only the first

model is presented completely. The others are described by indicating how

they differ from the first model.

3.1 =E DPS. CONTROL MODEL

The XFDPS.1 control model was first defined in [Sapo80] and further

refined in [Ensl8l]. With the aid of a simulation environment, this model has

been even more completely defined. The XFDPS.1 model is composed of six types

of components: TASK SET MANAGERs, FILE SYSTEM MANAGERs, FILE SET MANAGERs,

PROCESSOR UTILIZATION MANAGERs, PROCESSOR UTILIZATION MONITORs, and PROCESS

MANAGERs. (See Figure 1.) The basic strategy of this model of control is to

partition the system's resources and assign separate components to manage each

partition.

3.1.1 aik §& Manager
A TASK SET MANAGER is assigned to each user terminal as well as to each

executing command file. The name TASK SET MANAGER results from the nature of

user work requests which originate from user terminals and command files. The

work requests specify one or more executable files called tasks (these contain

either object code or commands) and any input or output files used by the

tasks. It is possible for the tasks of a work request to communicate, and

this communication (task connectivity) is also described by the work request.

Therefore, each work request specifies a set of tasks, and it is the job of

the TASK SET MANAGER to control the execution of that set of tasks.

When a work request arrives, the TASK SET MANAGER parses the work

request and initiates construction of the task graph for this work request.

In XFDPS.1, only a single copy of the task graph is maintained. This copy is

stored at the node where the TASK SET MANAGER for the work request resides.

At this stage of work request processing, the task graph contains the initial

resource requirements for the work request. -1

FmxEG~ PAZa BAIJJ-z4o nrww

Page 18 MODELS O" CONTROL Section 3

II I I I I
I I.--- >1 FILE SET I

II 1<-I- , MANAGER I
S ---.- >1 FILE I I

T SYSTEM I

I A < ---- I MANAGER I

S ---- >1 FILE SET ii
I<---- I MANAGER IK I I I

III I I
I l--->l PROCESSOR 1 I
I I I UTILIZATION I

S <--- MONITOR I
1.---->I PROCESSOR I_ _ _

E j I
I I UTILIZATION

T I I
1<---- I MANAGER II I

....- >1 PROCESSOR J I
M IUTILIZATIONI

II I <-... MONITOR IIA ' _ __ _ I __ _ __

N I Distribution of Components:

A I TASK SET MANAGER - 1 per user terminal
I I or executing command file

G I
1--->: PROCESS FILE SYSTEM MANAGER - 1 per node

E E I
I<---! MANAGER FILE SET MANAGER - 1 per node

[, I I PROCESSOR UTILIZATION MANAGER - 1 per nodeII I'
1 1 I PROCESSOR UTILIZATION MONITOR - 1 per nodeII I

__ 1 I PROCESS MANAGER - 1 per node

Figure 1. The XFDPS. 1 Model of Control

In the next step, a message is sent to the FILE SYSTEM MANAGER residing

on the same node as the TASK SET MANAGER requesting file availability informa-

tion ooncerning the files needed by the work request. A message is also sent

Section 3 MODELS OF CONTROL Page 19

to the PROCESSOR UTILIZATION MANAGER residing on the same node as the TASK SET
MANAGER requesting processor utilization information. This includes the
latest utilization information that this particular node has obtained from all

other nodes.

When the file availability information and processor utilization

information arrive, a work distribution and resource allocation decision is
made by the TASK SET MANAGER. At this point, specific files are chosen from
the list of files found available and specific processors are chosen as sites
for the execution of the various tasks of the work request's task set. In

this study no attempt is made to investigate different strategies for
distributing work; instead, a single strategy is used for all experiments.

(Other work in progress in the FDPS Research Program at Georgia Tech is
examining the complete area of work distribution and resource allocation.) In

this strategy, a process is assigned to execute on the same node that its
object code resides. Data files are not moved but accessed from the node on

which they originally resided.

Once the allocation decision is made, a request for the locking of the

chosen files is sent by the TASK SET MANAGER to the FILE SYSTEM MANAGER resid-
ing on the same node as the TASK SET MANAGER. The desired type of access

(READ or WRITE) is also passed along with the lock request. Multiple readers
are permitted, but readers are denied access to files already locked for

writing, and writers are denied access to files locked for reading or writing.
If the FILE SYSTEM MANAGER informs the TASK SET MANAGER that all the desired

files have been successfully locked, execution of the work request can be
initiated. If the locking operation is not successful, the work request is

aborted, and the necessary cleanup operations are performed. The next step
after successful file allocation is to send a series of messages to the

PROCESS MANAGERs on the various nodes that have been chosen to execute the
tasks of the task set informing them that they are to execute a specific sub-

set of tasks.

When a task terminates, its PROCESS MANAGER reports back to the TASK SET

MANAGER and indicates the reason for the termination (normal or abnormal).
When an indication of an abnormal termination is received, the remaining

active tasks of the task set are terminated.

Page 20 MODELS OF CONTROL Section 3

After all tasks of a task set have terminated, one of three possible

actions occurs. If the source of commands is a user terminal, the user is

prompted for a new command. If the source is a command file, the next command

is obtained. Finally, if the source is a command file and all the commands

have been executed, the TASK SET MANAGER is deactivated and the PROCESS

MANAGER on the node where the command file was being executed is informed of

the termination of the command file.

3.1.2 FU& eAZte aLngr

Replicated on each node of the system is a component called the FILE

SYSTEM MANAGER. This module handles the file system requests from all of the

TASK SET MANAGERs including requests for file availability information and

requests to lock or release files. FILE SYSTEM MANAGERs do not possess any

directory information. Therefore, to locate a file, it is necessary that all

nodes are queried as to the availability of the file.

The FILE SYSTEM MANAGER satisfies the requests by consulting with the

FILE SET MANAGERs (see Section 3.1.3) located on each node of the system. For

example, when the FILE SYSTEM MANAGER receives a request for file availability

information, messages are prepared and sent to all FILE SET MANAGERs. The

FILE SYSTEM MANAGER collects the responses, and when responses from all FILE

SET MANAGERs have been obtained, it reports the results to the TASK SET

MANAGER which made the request. Requests for the locking or releasing of

files are handled in a similar manner.

3.1.3 W£. St. AAEmr

The files residing on each node of the system are managed separately

from the files on other nodes by a FILE SET MANAGER that is dedicated to

managing that set of files. The duties of the FILE SET MANAGER include

providing file availability information to inquiring FILE SYSTEM MANAGERs and

reserving, locking, and releasing files as requested by FILE SYSTEM MANAGERs.

It should be noted that a side effect of gathering file availability informa-

tion is the placement of a reservation on a file that is found to be

available.

3.1.4 mf 1e11±aat ms
Also present on each node is another component of the executive control,

the PROCESSOR UTILIZATION MANAGER. This module is assigned the task of col-

Section 3 MODELS OF CONTROL Page 21

lecting and storing processor utilization information which is obtained from

the PROCESSOR UTILIZATION MONITORs (see Section 3.1.5) residing on each of the

nodes. When a TASK SET MANAGER asks the PROCESSOR UTILIZATION MANAGER for

utilization information, the PROCESSOR UTILIZATION MANAGER responds with the

data available at the time of the query.

3.1.5 Processr Utli1zation~ Monitor
Each node of the system also has a PROCESSOR UTILIZATION MONITOR that is

responsible for collecting various measurements needed to arrive at a value

describing the current utilization of the processor on which the PROCESSOR

UTILIZATION MONITOR resides. The processor utilization value is periodically

transmitted to the PROCESSOR UTILIZATION MANAGERs on all nodes.

3.1.6 ProcesskianAM

Residing on each node of the system is a PROCESS MANAGER whose function

is to supervise the execution of processes executing on the node on which it
resides. The PROCESS MANAGER is responsible for activating and deactivating

processes. If the execution file for a process is an object file, the PROCESS

MANAGER will load the object file into memory. This file may reside either

locally or on a distant node. If the execution file is a command file, the

PROCESS MANAGER sees that a TASK SET MANAGER is activated to respond to the

commands of that command file. The PROCESS MANAGER is also responsible for

handling process termination. This involves releasing local resources held by

the process and informing the TASK SET MANAGER that requested the execution of

the process as to the termination of the process.

3.1.7 £±LfProcss
In order to provide file access in a manner that is uniform with the

operation of the rest of the system, another type of control process is

utilized, the FILE PROCESS. For each access to a file, an instance of a FILE

PROCESS is created. Therefore, if process "A" is accessing file "X" and

process "B" is also accessing file "X", there will be two instances of a FILE

PROCESS, each responsible for a particular access to file "X". Communication

between FILE PROCESSes and user processes (file reads and writes) or between

FILE PROCESSes and PROCESS MANAGERs (loading of object programs) is handled in

the same manner as communication between user processes.

k_~

Page 22 MODELS OF CONTROL Section 3

3.2 = ZrDPS.Z CONTROL NO&

The XFDPS.2 model of control differs from the XFDPS.1 model in the man-

ner in which file management is conducted. In this model a centralized direc-

tory is maintained. In Appendix 1 the component named FILE SYSTEM MANAGER

maintains this directory. This component resides on only one node, the node

where the file system directory is maintained. TASK SET MANAGERs communicate

directly with this component in order to gain availability information, lock

files, or release files.

When a file is locked it is necessary to create a FILE PROCESS in order

to provide access to the file. To accomplish this task, the FILE SYSTEM

MANAGER sends a message to the node where the file resides requesting activa-

tion of a FILE PROCESS providing access to the file. Once this process is

created, the FILE SYSTEM MANAGER is given the name of the FILE PROCESS which

it then returns to the TASK SET MANAGER that requested the file lock.

3.3 MM ZEDPS..1 CONTOL HODM

In the XFDPS.1 model of control a search for file availability informa-

tion encompassing all nodes is conducted for each work request. Obtaining

this global information is important when one is attempting to obtain optimal

resource allocations. In those instances where this is not important a slight

variation on the search strategy may be utilized. This strategy is the

distinguishing feature of the XFDPS.3 model of control.

Instead of immediately embarking on a global search, a search of local

resources (i.e., resources that reside on the same node where the work request

originated) is conducted. If all of the required resources are located, no

further searches are conducted, and the operations of looking files, activat-

ing process, etc., described for model XFDPS.1 are executed. If on the other

hand all required resources could not be found, the strategy of model XFDPS.1

is utilized.

3.4 = XB DM Z~lA ~DZAWQ 10La

The XFDPS.4 model of control utilizes a file management strategy similar

to that of the ARAMIS Distributed Computer System [Caba79a, b] in whioh mul-

tiple redundant file system directories are maintained on all nodes of the

Section 3 MODELS OF CONTROL Page 23

system. However, since detailed information about the system described in

[Caba79a,b] is not available, model XFDPS.4 cannot be claimed to be an

accurate model of that system.

To preserve the consistency of the redundant copies of the file system

directory and to provide mutually exclusive access to resources, the following

steps are taken. A control message, the control vector (CV), is passed from

node to node according to a predetermined ordering of the nodes. The holder

of the CV can either release, reserve, or lock files. Therefore, each node

collects file system requests and waits for the CV to arrive. Once in posses-

sion of the CV, a node can perform the actions necessary to fulfill the

requests it has collected.

The modifications to the file system directory are then placed into a

message called the update vector (UPV) which is passed to all nodes in order

to bring all copies of the file system directory into a consistent state.

When the UPV returns to the node holding the CV, all updates have been recor-

ded, and the CV can be sent on to the next node.

In the XFDPS.5 model, files are not reserved when the initial

availability request is made, and they are locked only after the work

distribution and resource allocation decision has been made. This strategy

leads to the possibility of generating an allocation plan that is impossible

to carry out if a file chosen for allocation has been given to another process

during the interval in which the resource allocation decision is made. In the

previous models, the executive control is assured of an allocation being

accepted, assuming no component fails.

3.6 T= Z .. CONTROLIOD=

In the XFDPS.1 model, the task graph for a particular work request is

maintained as a single unit and stored on only one node, the node at which the

work request originates. The XFDPS.6 model of cnntrol utilizes a slightly

different strategy. The task graph is constructed on a single node, but once

a work distribution and resource allocation decision has been made, portions

of the task graph are sent to various nodes. Specifically, those nodes chosen

to execute the various tasks of the task graph are given that portion of the

Page 24 MODELS OF CONTROL Section 3

task graph for which they are responsible. Each node, then, must activate the
tasks assigned to it and collect termination information concerning those

tasks. When all tasks assigned to a particular node have terminated, the node

where the work request originally arrived is informed of their termination.

One can view this strategy as a two-level hierarchy.

Section 4 THE SIMULATOR Page 25

SECTION 4

THE SIMULATOR

In order to obtain quantitative information concerning the relative per-

formance of the various models of control, simulation experiments are conduc-

ted. The goals of these experiments are to validate the models of control

described in Section 3 and gather data on their relative performance. In

order to be able to express the differences between the various models, it is

necessary that the simulator provide for the specification of relatively low

level features of the control models.

4.1 fI QU ILM £Q H S MULAIR

The goals described above necessitate the establishment of several
requirements for the simulator. In order to handle low level control problems

and document solutions to these problems, the control models must be defined
in a language capable of clearly expressing the level of detail required at

this stage of design. Because a number of models are to be tested, it is

important that the coding effort for these models be minimized.

It is expected that the architecture of the network as well as that of

individual nodes in the network will affect the relative performance of
various control models. Therefore, one must be able to easily modify various

architectural attributes. This includes network connectivity, network link

capacities, and the capacities and processing speeds of the individual nodes

of the network.

Validation of control models is one of the primary goals of the simula-

tion studies. To achieve this goal the simulator must provide the ability to

establish specific system states. In other words, specific detailed instances

of work requests need to be constructed along with the establishment of

specific resource states (e.g., one must be able to set up a series of files

in specific locations). These capabilities allow one to exercise specific

features of the control models.

The simulation studies also provide performance information. The

simulator must utilize a technique for generating work requests reflecting
specific distributions. It also needs to collect a variety of performance j

Page 26 THE SIMULATOR Section 4

measurements and generate appropriate statistical results.

4.2 = STR.CTURE S IMULATOR

The simulator is event based and programmed in Pascal. It simulates the

hardware components of an FDPS, functions typically provided by local operat-

ing systems, functions provided by a distributed and decentralized control,

and the load placed upon the system by users attached to the system through

terminals.

4.2.1 Architeature IMaMat

The hardware organization that is simulated is depicted in Figure 2.

The complete system consists of a number of nodes connected by half-duplex

communication links. Each node contains a CPU, a communications controller,

and perhaps a number of disks. Connected to each node are a number of user

terminals. The disk simulation is such that no actual information is stored;

only the delays experienced in performing disk input/output are considered.

User interprocess communication (IPC) is simulated with time delays but no

exchange of real data takes place. However, IPC between components of the

executive control involves both simulation of the time delays involved in mes-

sage transfer and the actual transfer of control information to another

simulated node.

4.2.2 1 O&I .qnrZtj=Sytaem

Components typically found in local operating systems are also

simulated. These include the dispatcher and the device drivers. The local

operating systems are multitasking systems with each node capable of utilizing

a different time slice. User processes are serviced in a first come first

served manner and can be interrupted for any of the following reasons: 1) a

control process needs to execute (user process is delayed until the control

process releases the processor), 2) the user process exhausts its time slice

(user process is placed at the end of the READY QUEUE), 3) the user process

attempts to send or receive a message (user process is placed on the MESSAGE

BLOCKED QUEUE), or 4) the user process terminates.

The processes serviced by the simulator are capable of performing the

following actions: compute, send a message, receive a message, or terminate.

A process can access a file by communicating with a FILE PROCESS which is

I.

Section 4 THE SIMULATOR Page 27

NODE
..

I I.• I I•
1 Term 1-- ---------

I *_ . I •

* . CPU/Memory
* • I I•
_ _ I I.

I I.• I.
I Term I--. --- -•I __ I . I _ _ _ _ _ _ _ __I•

* I •

SDisk •
* I I •

• Communications _••
• Controller

• I I_ _ _I isi •

• A , A IDisk .

• I I __I•

'I
Il..........

I'

Communication Links
To/From Other Nodes

Figure 2. The Architecture Supported by the Simulator for Each Node

activated for the specific purpose of providing access to the file for this

process. FILE PROCESSes are the only processes that initiate any disk

activity. As far as a user process is concerned, a file access is simply a

communication with another process.

The following process queues are maintained: READY QUEUE, DISK WAITING

QUEUE, and MESSAGE BLOCKED QUEUE. (See Figure 3.) A newly activated process

is placed in the READY QUEUE. The DISPATCHER selects a process from the READY

L..W,-

Page 28 THE SIMULATOR Section 4

QUEUE to run on the CPU. If the running process exhausts its time slice, it
is returned to the READY QUEUE. If it either attempts to send or receive a

message, it is placed in the MESSAGE BLOCKED QUEUE where it remains until

either the message is placed in the proper link queue (send operation) or a

message is received (receive operation). After leaving the MESSAGE BLOCKED

QUEUE, a process returns to the READY QUEUE.

The only processes capable of performing disk input/output on the
simulator are FILE PROCESSes. These are executive control processes that are

assigned to provide access to the files of the file system. When a file

process attempts a disk access, it is blocked and placed in the DISK WAITING

QUEUE for processes waiting to access that same disk. As the disk requests
are satisfied, these processes are returned to the READY QUEUE.

41.2.3 BRAMMS ZU~tM
The communication system consists of a series of half-duplex connections

between pairs of nodes. Messages are transmitted using a store-and-forward

method. Messages received at intermediate nodes in a path are stored and for-
warded to the next node at a time dictated by the communication policy being

utilized. For example, the policy may require that the new message be placed

at the end of the queue of all messages to be transmitted on a particular
link. (This is the policy utilized in all experiments.)

The message queues available on each node are depicted in Figure 4. If
a newly created message is an intranode message, it is placed in the MESSAGE

QUEUE; otherwise, it is placed in the LINK QUEUE that corresponds to the com-
munication link over which the message is to be transmitted. Messages are

removed from the LINK QUEUEs and transmitted as the communication links become
available.

Messages in the MESSAGE QUEUE originate either from processes sending

intranode messages or from the communication links connected to the node.

Messages destined for processes on the same node as the MESSAGE QUEUE are

placed in the appropriate PORT QUEUE of the process to which they are addres-

sed. Messages that have not yet reached their destination are placed in the

LINK QUEUE corresponding to the communication link over which the message is

to be transmitted.

Section 4 ~ THE SIMULATOR Page 29

EXECUTING
READY PROCESS
QUEUE

New 1 ____1-

Process -------->__>__------- > TERMINATED

MESSAGE
BLOCKED
QUEUE

------- > - --------------------------- >1

PROCESS
DISK 1 ACCESSING
WAITING DISK 1
QUEUE___

I------------- > ----___ ---- > ----------- >1

PROCESS
DISK 2 ACCESSING
WAITING DISK 2
QUEUE

------------- >- --- ---_-- --- ----_>

PROCESS
DISK n ACCESSING
WAITING DISK n

I QUEUE

> --- I--_ ---- > ---------- >1

Figure 3. Process Queues on Each Node

Page 30 THE SIMULATOR Section 4

LINK I
Message QUEUE
from

Active ________I- > External Link

Process I
_ _ I
- ------------------

' _ _ I' A I

' ' LINK n
I I QUEUE

I I....> External Link
!>

I PORT 1,1 (port 1 for process 1)
QUEUE

I I-------__ > I- > PROCESS 1

I I
I I

__ , I I
PORT n,1 (port n for process 1)
QUEUE

II _ _ _

MESSAGE I-------- > __ ...I- > PROCESS 1
QUEUE1' _ _ I I•

External----> I--I
Links

PORT 1,m (port 1 for process m)
QUEUE

-..... > ,..._1----> PROCESS m

I PORT n,m (port n for process m)
QUEUE

-- --- -> _____----> PROCESS m

Figure 4i. Message QUEUEs on Each Node

Section 4 THE SIMULATOR Page 31

4.2.4 nmutr Simlatr

The simulator requires the following six types of input:

1. Control model
2. Network configuration (i.e., nodes and their connectivity)
3. Work requests
4. Command files
5. Object files
6. Data files

The nature of these inputs and how they are provided to the simulator is

described below.

4.2.4.1 Control Model

There are two possible approaches for representing the control model in

the simulator: 1) data to be interpreted by the simulator and 2) code that is
actually part of the simulator. The first technique requires that the

simulator contain or include a rather sophisticated interpreter in order to
provide a convenient language with which one can express a control model that

addresses the control problems to a sufficiently low level of detail. The

second technique requires the careful construction of the simulator such that

those portions of the simulator that express the control model are easily
identified and can be removed and modified with minimal effort. The second

technique also requires a recompilation of the simulator code each time a

control model modification is performed.

The problems involved in constructing a sophisticated interpreter are

much greater than those faced in organizing the simulator so that the portions

of code expressing the control model are easily isolated. Therefore, in this

simulator, the control models are expressed in Pascal and are actually part of

the simulator rather than being separate input to the simulator.

4.2.4.2 Network Configuration

The attributes provided as input to the simulator which are concerned

with the physical configuration of the FDPS are provided in Table 2. Figure 5

describes the syntax of the statements used to enter the FDPS configuration

information. Two types of input can be provided, node configuration informa-

tion and communication linkage information. Each statement beginning with the

letter 'n' describes the configuration of the node which is identified by the
digit following the 'n'. This statement describes certain characteristics

concerning the processor at the node (memory capacity, processing speed, and

iI

I

Page 32 THE SIMULATOR Section 4

the length of a user time slice) and the peripheral devices (user terminals

and disks) attached to the processor. Each statement beginning with the let-

ter 'I' describes a half-duplex communication link between two nodes. It

identifies the source and destination nodes by their identification number

(the digit following the letter 'n' on statements describing nodes) and

indicates the effective bandwidth of the communication link. It is assumed

that all messages are transmitted at this speed, and no attempt is made to

simulate errors in transmission and the resulting retransmissions.

Table 2. Physical Configuration Input to the Simulator

Bodt Irmtion
Memory Capacity (bytes)
Processing Speed (Instructions/see)
Size of a Time Slice (microseconds)
Number of Attached User Terminals
Number of Attached Disks
Disk Transfer Speed (bytes/second)
Average Disk Latency (microseconds)

LInk m ±a
Identities of the Source and Destination Nodes
Bandwidth (bytes/second)

4.2.4.3 Work Requests

Work requests are assumed to originate from two sources: 1) directly

from a user, or 2) through command files. The syntax of a work request is

given in Figure 6. This syntax is a subset of the command language available

through the Advanced Command Interpreter of the Georgia Tech Software Tools

System [Akin80].

A work request is basically a specification of a logical network of

tasks. The nodes of the logical network represent tasks and the links

represent communication paths between the tasks. A node specification

includes the following: an optional label to identify the node, a command

name (this may name either an object file or a command file), and any I/O

redirection. A node can be identified either by its label, if it possesses

one, or by its position on the command line. For example, in the command

Section 4 THE SIMULATOR Page 33

<entry> <link> I <node>

<link> ::= 1 <from> <to> <bandwidth> (all links are half-duplex)

<node> n <node id> <memory> <speed> <timeslice> <terminals>
<disk> <disk speed> <disk latency>

<from> ::= <node id>

<to> ::= <node id>

<node id> ::= <integer>

<bandwidth> ::= <integer (link bandwidth in bytes per second)>

<memory> <integer (main memory in bytes)>

<speed> <integer (average speed of the CPU in instructions per second)>

<timeslice> <integer (microseconds)>

<terminals> <integer (number of attached user terminals)>

<disk> ::= <integer (number of attached disks)>

<disk speed> ::= <integer (transfer speed of disk in bytes/sec)>

<disk latency> ::= <integer (average disk latency in microseconds)>

<integer> ::= <digit> { <digit> }

Examples:

n 1 256000 5000000 1000 50 3 500000 100
(Node #1 has 250K bytes of memory, processes at the rate of
5 MIPS, has a time slice of 1000 microseconds, has 50 user
terminals attached to it, has 3 disks attached to it,
each disk can transfer at the rate of 500,000 bytes/see,
and each disk has an average latency of 100 microseconds.)

1 5 6 4000000
(This link connects node 5 to node 6 with a half-duplex
communication path that can transmit at the rate of
4 million bytes/see.)

Figure 5. Syntax of FDPS Configuration Input for the Simulator

A

Page 34 THE SIMULATOR Section 4

<work request> ::< (logical net>

<logical net> ::= <logical node> I <node separator>
{ <node separator>) <logical node> }

<node separator> = <pipe connection>

<pipe connection> : <port>] 'I' [<logical node number>]
[.<port>]

<port> ::= <integer>

<logical node number> ::= <integer> I $ I <label>

<logical node> : :<label> I <simple node>

<simple node> : <i/o redirector> } <command name>
{ <i/o redirector> }

<i/o redirector> <file name> '>' <port>] I
[<port> I '>' <file name> I
[<port> I '>>' <file name> I

'>>' [<port>]

<command name> ::= <command file name> I <object file name>

<label> ::= <identifier>

<file name> ::= <data file name>

<identifier> <letter> f <letter> I <digit> }

<integer> ::= <digit> J <digit> }

Examples:

ppl I pgm2 1Ha 21b :a pp3 I ppgm 1c.1 :b pgm5 I pgm6 1.2 :c pgm7

(For an explanation of this example see Figure 7.)

Figure 6. Work Request Syntax
(Based on [AKIN80])

Section 4 THE SIMULATOR Page 35

below, the second node has the label 'a' and the command name 'cmnd2'.

emndl I :a cmnd2

This node can be identified either by the label 'a' or its position '2' but

not by its name, 'cmnd2'.

I/O redirection is used to connect ports of task to files in the file

system. (The default for I/O is "standard input/output," i.e., the user's

terminal.) In the example below, input port number three is connected to file

'in' and output port number one is connected to file 'out'.

in>3 cmnd 1>out

The specification of the port number in the I/O redirector is optional. If it

is omitted, the next unused port number is assumed. Therefore, in the example

below, output port number one is connected to file 'out1', output port number

two is connected to file 'out2', and output port number three is connected to

file 'out3'.

cmnd >outl 2>out2 >out3

Nodes are separated by node separators which can be either the comma

symbol or the vertical bar symbol. The comma symbol is used to separate a

node that does not have any output ports connected to any other nodes. The

vertical bar symbol or pipe symbol is used to identify the connection of an

output port of the node immediately preceding the pipe symbol and the input

port of another node. The port numbers and logical node number of the pipe

specification may be omitted and default values assumed. If a port number is

omitted, the next unused port number for the node possessing the port is used.

The logical node number of the pipe specification identifies a node of the

logical network. It may either be an integer identifying the position of the

node on the command line, the symbol '4' which identifies the last node on the

command line, or a node label. If no other node is specified, the node

immediately following the pipe symbol is assumed to be the destination of the

output of the pipe.

An example of a work request utilizing this syntax is shown in Figure 7.

This command consists of seven logical nodes connected in the manner depicted

in the figure. It demonstrates several forms of pipe specifications including

the use of labels in identifying nodes.

4'

i

I Il '"-i , L llll II IIIII i

Page 36 THE SIMULATOR Section 4

Work Request:

pgml I pgm2 11a 21b :a pgm3 1 pgm4 1c.1 :b pgm5 I pgm6 1.2 :c pgm7
(0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

(0) Output port I of pgml is connected to input port I of pgm2.
(1) Output port 1 of pgm2 is connected to input port 1 of the

logical node labeled "a," pgm3.
(2) Output port 2 of pgm2 is connected to input port 1 of the

logical node labeled "b," pwm5.
(3) Label for the logical node containing pgm3 as its execution

module.
(4) Output port 1 of pgm3 is connected to input port 1 of pgm4.
(5) Output port 1 of pgm4 is connected to input port 1 of the

logical node labeled "c," pgmT.
(6) Label for the logical node containing pgm5 as its execution

module.
(7) Output port 1 of pgm5 is connected to input port 1 of pgm6.
(8) Output port 1 of pgm6 is connected to input port 2 of pgm7.
(9) Label for the logical node containing pgm7 as its execution

module.

Data Flow Graph of the Work Request:

pgml

V

pgm2
II
II l__

I t
I I

pgm3 pgm5
' I
I I
V V
pgm4 pgm6

I I

II
II

pgm7

Figure 7. Example of a Work Request

Section 4 THE SIMULATOR Page 37

In order to simulate the load generated by users entering work requests

from user terminals, a population of work requests is created. The form of

the input for creating the work request population is provided in Figure 8.

Each line of input contains a series of node identifiers followed by a colon

which is followed by a work request. The node identifiers indicate which

nodes are to contain the given work request as a member of the node's popula-

tion of work requests. Therefore, the result of this input is the construc-

tion of a population of work requests for each node. In a subsequent

paragraph, the nature of the load generator is discussed and indicates how

this information is utilized.

<work request population> ::= <work request entry>

<work request entry>

<work request entry> { <node identifier> } : <work request>

<node identifier> ::= <integer>

<work request> ::= (see Figure 6)

<integer> ::= <digit> f <digit> }

Examples:

1 2 3 4 5 : pgml I pgm2 { the work request 'pgml I pgm2'
is available on nodes 1, 2, 3,
4, and 5)

1 3 : pgml the work request 'pgml' is
available on nodes 1 and 3 }

Figure 8. Syntax of Work Request Population Input to the Simulator

4.2.4.4 Commud Files

Commiand files are constructed for the simulator using the syntax

desoribed in Figure 9. This input specifies a unique name for the file, the

simulated node at which the file resides, and the commands contained in the

file. These oommands conform to the syntax of work requests presented in

Page 38 THE SIMULATOR Section 4

Figure 6. These statements provide one with the ability of constructing com-

mand files on particular nodes which are referenced either by commands

originating from user terminals or other command files.

<command file> ::= C <node id> <command file name>
[<work request> }
ENDC

<node id> ::= <integer>

<command file name> ::= <up to 8 characters>

<work request> ::= (see Figure 6)

<integer> ::= <digit> { <digit> }

Examples:

C 1 cfilel

pgml 1 pgm2 1Ha 21b :a pgM3 1 pgm4 1c.1 :b P 5 I pgm6 1.2 :c pg7
pgml 1 pgm5
ENDC

Figure 9. Syntax of Command File Input to the Simulator

1.2.11.5 Object Files

Figure 10 depicts the syntax used to express object files in the

simulator. The input specifies a unique name for the file, the simulated node

at which the file resides, the length of the file in bytes, and the simulation

script. The script contains a series of statements that describe the process

actions that are to be simulated. There are five actions which can be

simulated: 1) compute, 2) receive a message, 3) send a message, 4) loop back

to a previous command a specific number of times, and 5) terminate the process

simulation. By appropriately combining these commands, one can construct a

script which simulates the activities of a given user process.

4.2.4.6 Data Files
Data files, depicted in Figure 11, are the final type of file which can

be presented to the simulator. The data file input contains an identifying

Section 4 THE SIMULATOR Page 39

<object file> ::0 <node id> <object file name> <object file length>
f <action> 1
ENDO

<node id> ::= <integer>

<object file name> ::= <up to 8 characters>

<object file length> ::= <integer>

<action> ::= <comp> f <loop> I <rcv> I <send> I <term>

<comp> c <# of instructions>

<loop> 1 <instruction > <count>

<rcv> ::= r <port>

<send> ::s s <port> <size (bytes)>

<term> ::= t

<# of instructions>, <instruction #>, <count>, <port>,
<size> ::= <integer>

<integer> ::= <digit> { <digit> }

Examples:

0 1 objectl 1000 (object file is 1000 bytes long)
c 25 (simulate 25 computation instructions)
1 1 10 (loop back to the first instruction 10 times)
r 2 (read a message from port 2)
s 4 100 (send a message of 100 bytes in length to port 4)
t (terminate the execution of this process)
ENDO

Figure 10. Syntax of Object File Input to the Simulator

name, a node identification indicating the file's simulated location, and a

specification of the file size. Data is not actually stored by the simulator.

4.2.5 a.lSuatorDeaJ
The simulator is composed of several modules. In each module, closely

related data structures and the procedures that modify these data structures

are defined. The only access to the data structure is through these

iii

Page 40 THE SIMULATOR Section 4

<data file> :.= D <node id> <data file name> <size>

<node id> ::= <integer>

<data file name> ::= <up to 8 characters>

<size> ::= <integer (bytes)>

<integer> ::= <digit> { <digit> }

Examples:

D 3 testfile 100000 (defines a data file named 'testfile'
which will reside on node 3 and will
contain 100,000 bytes of information)

Figure 11. Syntax of Data File Input to the Simulator

procedures. This design allows one to isolate the portion of the simulator

that represents the model of control and conduct experiments with various

perturbations of the control model. Without this type of design, each pertur-

bation could easily require significant changes to the entire simulator. The

major modules of the simulator are described below.

4.2.5.1 Node Module

The NODE MODULE simulates the hardware activities of each node (e.g.,

the processor and attached disks). This includes the simulation of user

activities as specified by process scripts and the simulation of disk traffic.

In addition, this module provides the local operating system functions of

dispatching, blocking processes for message transmission or reception, and

unblocking processes.

4.2.5.2 Message System

All activities dealing with messages are handled by the MESSAGE SYSTE.

Among the services provided by this module are the following: 1) routing of

messages, 2) placement of messages in LINK QUEUEs, 3) transmission of messages

across a link, 4) transmission of acknowledgement signals to the source end of

a link, and 5) placement of messages in PORT QUEUEs.

Section 4 THE SIMULATOR Page 41

4.2.5.3 File System
The FILE SYSTEM stores the various types of files, which include object,

command, and data files. It stores the scripts for object files and provides

access to the scripts. Similarly for command files, it stores the work

requests for each command file and controls access to the file. It maintains

directories that provide location information and access control information.

All executive control actions pertaining to the file system are contained in

this module.

4.2.5.4 Command Interpreter

The COMMAND INTERPRETER parses work requests and constructs the task

graph describing the initial resource requirements for a work request.

4.2.5.5 Task Set and Process Manager

The TASK SET AND PROCESS MANAGER performs all control activities

required to manage all phases of execution of a work request. This includes

activating the COMMAND INTERPRETER; communicating with the FILE SYSTEM in

order to gather information, allocate files, or deallocate files; perform work

distribution and resource allocation; and manage active processes.

4.2.5.6 Load Generator

Work request traffic originating from the user terminals attached to

each node is created by the LOAD GENERATOR. A series of work requests

provided by a user at a terminal is called a user session. To simulate a user

session, the LOAD GENERATOR randomly chooses a session length from a user

specified interval. A session starting time (measured in seconds) is also

chosen at random from a user specified interval. Each work request for the
user session is chosen at random from the population of work requests

originally created for each node via the input statements described above (see
Figure 8). The LOAD GENERATOR also simulates the "think time" between work

requests by randomly choosing a time (measured in seconds) from a user

specified interval.

4.2.6 Pyfrmance Mqaaajinents

Performance measurements are made concerning three types of data: 1)

the quantity of message traffic, 2) the magnitudes of various queue lengths

and their associated waiting times, and 3) the size of average work request

response times and throughput.

Page 42 THE SIMULATOR Section 4

To identify the impact of the executive control on the communication

system, various communication measurements are obtained. A cumulative total

of the number of user messages and control messages over the entire system is

maintained. This allows one to compare the number of control messages to the

number of user messages and thus identify how the communication system is

being utilized. In addition, a count, again categorized by user messages and

control messages, is maintained in matrix form to identify the total number of

messages originating at a particular node and destined for every other node.

Traffic counts on each communication link are also recorded according to their

classification as user messages or control messages. Finally, activity in the

LINK QUEUEs, where messages wait to be transmitted over each link, is

maintained. These measurements include minimum queue length, maximum queue

length, average queue length, minimum waiting time in the queue, maximum wait-

ing time, and average waiting time.

In addition to measurements concerned with the LINK QUEUEs, a similar

analysis of process queues is performed. The queues on each node that are

analyzed are the READY QUEUE (processes waiting for access to the CPU), MES-

SAGE BLOCKED QUEUE (processes that are either waiting to place a message in a

LINK QUEUE or processes waiting to receive a message), and DISK WAITING QUEUEs

(processes waiting for access to a particular disk). The types of

measurements obtained are identical to those for the LINK QUEUEs.

To identify the effectiveness of the control strategy, measurements are

obtained that identify how effectively user processing is accomplished. For

each node and cumulatively for all nodes, the following measurements are

obtained for user sessions, work requests, and processes:

1. The total number of user sessions, work requests, and proces-
ses.

2. The average service time for each user session, work request,

and process.

3. The average response time for each user session, work request,
and process.

4. The throughput for user sessions, work requests, and processes.

Section 5 THE SIMULATION EXPERIMENTS Page 43

SECTION 5

THE SIMULATION EXPERIMENTS

In the second phase of experimentation two groups of simulation

experiments designed to measure the performance of the various models in an

FDPS environment are conducted. In addition, a number of experiments are con-

ducted with a single node network. In the first group of FDPS experiments,

only one work request is processed by the entire network. The intent of this

set of experiments is to determine the minimum delay experienced by a work

request with each model of control. In the second group of experiments, a

load is placed on all nodes. These sudies are designed to examine the

behavior of the various models of decentralized control operating in a produc-

tion mode with various physical interconnection topologies. The single node

experiments provide a means of comparing the performance of an FDPS to that of

isolated uniprocessors.

5.1 = SILAION ENVIRONTS

The environment in all FDPS experiments consists of a network of five

nodes interconnected in various ways providing five different interconnection

topologies: 1) a unidirectional ring, 2) a bidirectional ring, 3) a star, 4)

a fully connected network, and 5) a tree. (See Figure 12.) The nodes of each

network (see Figure 2) are all homogeneous, and each consists of a processor

capable of executing one million instructions per second. Connected to each

node are ten user terminals and three disk drives. The disks are assumed

identical, each with an average latency of 100 microseconds and a transfer

rate of 500,000 bytes per second.

5.1.1 f!yZ2nnu p intn1 ab

In addition to different topologies, the bandwidth of the communication

links and the model of control are also varied for the experiments. Table 3

provides a brief comparison of the various models. Only the first four models

of control (XFDPS.1, XFDPS.2, XFDPS.3, and XFDPS.4) are utilized in these

initial experiments. Models XFDPS.5 and XFDPS.6 differ from model XFDPS.1 in

details that are not examined in these experiments. Therefore, they are not

considered in these experiments because their observable results will be

identical to those of XFDPS.1. It is instructive, though, to note that not

A.

Page 44L THE SIMULATION EXPERIMENTS Section 5

Unidirectional Ring Bidirectional Ring

1
2

3

5 4

Star Fully Connected

Tree

Figure 12. Network Interconnection Topologies

Section 5 THE SIMULATION EXPERIMENTS Page 45

all model variations result in performance differences. Finally, it should 1.

noted that the central directory of model XFDPS.2 is maintained on node 1 in

all experiments.

5.1.2 Environmental 9 t

Several environmental features remain constant for all experiments. In

all cases, it is assumed that all control messages are 50 bytes long. All

control models utilize the same policy for distributing work and allocating

resources. This policy simply requires all processes to execute on the node

where the object code for that process resides. There is only one copy of the

object code for each process in the network for these initial experiments.

The work distribution and resource allocation policy utilized for these tests

requires that data files be accessed at the location where they originally

reside and not be moved prior to execution. In every experiment, all files

are unique thus leaving the control with only one resource allocation alter-

native.

The work requests arriving at all nodes are of the type 'in> cmnd'. The

data file 'in' provides input to the process resulting from the loading of the

object file 'cmnd'. This provides an environment in which files are accessed

only by means of reads thus eliminating the possibility that certain work

requests are either delayed or aborted due to insufficient resources.

Therefore, it is guaranteed that all control activity results in the success-

ful completion of a work request.

In all cases, the object file 'cmnd' and data file 'in' are located on

the same node. This means that all file accesses are local file accesses and

thus control message traffic is free of competition by user messages for com-

munication resources. This provides an environment in which the effects of

the control models can be more directly observed without the influence of an

unpredictable collection of user messages.

The object files in each case specify the execution of the same script

which is depicted in Figure 13. This script describes a process that alter-

nately computes and reads from a data file for 501 iterations. Given the

speed of the processors utilized in the experiments, this results in a CPU

utilization of approximately 5 seconds for each process.

r7

Page 46 THE SIMULATION EXPERIMENTS Section 5

Table 3. Comparison of the Control Models

I Technique for! Time
Gathering 1 When Files How is the

i File System Availability are Reserved Task Graph

Model Directory-! Information or Locked Maintained
I I
1 I

1 partitioned query all before I single
and nodes resource 1 structure

distributed allocation on node
' and work where work
I Idistribution request
I

I decision arrived

I

2 single I query the before single

1 centralized I central node resource structure
copy I allocation on node

I 'and work where work
I I

distribution request
-- Idecision arrived

3 Ipartitioned I first query I before single

and locally and resource structure

I distributed! then query! allocation on node
I globally if land work where work

1 necessary I distribution request

SI I decision I arrived
II I

4 identical all queries before single

copies I are delayed I resource structure

replicated until the allocation on node
on all control I and work I where work
nodes vector distribution request

I arrives I decision arrivedI_ _ _ _ I _ _ _ _ _ _ _ _ I _ _ _

I ,I I
5 partitioned query all I after single

and nodes , resource structure

I distributed I allocation I on node
I and work where work

I I distribution request
I I decision arrived

__ _ _ _ _ _ _I_ _ _ _ I _ _ _ _ _ _ _ _

I I I

6 I partitioned query all before I multiple
and nodes I resource I subgraphs

I distributed I ! allocation I on the nodes
IJ I I and work I involved in

I I distribution I the execution
I I decision I of the tasks

IL

Section 5 THE SIMULATION EXPERIMENTS Page 47

c 10000 { 10,000 compute instructions I
r 1 {read from port I

1 1 500 { loop back to instruction one 500 times I
t { terminate the process }

Figure 13. The Script Utilized By All Processes

5.2 GROUP

5.2.1 M Eviromet

The first group of experiments is designed to demonstrate the minimum

delay experienced by a single work request as a result of utilizing each model

of control. In this set of experiments, all topologies are investigated in

addition to various bandwidths ranging from 1200 to 500,000 bytes per second.

These experiments examine situations in which work requests arrive at both

nodes 1 and 2. In addition, the location of the object-data file pairs named

in the work request are varied over all five nodes.

Each of these tests requires the simulator to process only one work

request, thus eliminating competition for resources by other work requests.

The work request response times for each environment (model, topology, band-

width, and location of object-data file pair) are provided in Appendix 2.1.

5.2.2 OQserio=

A comparison of the results of this set of experiments can be seen in

Figures 14 and 15. In Figure 14, the results of work requests arriving at

node 1 can be seen. Node 1 is chosen in order to demonstrate how XFDPS.2 (the

model with a centralized file system directory located on node 1) can benefit

from the location of a work request. In all cases, model XFDPS.2 provides the

smallest response times. When the work request arrives at another node (e.g.,

node 2) XFDPS.2 no longer provides the minimum response time in all cases.

The sensitivity of XFDPS.2 to the location of the work request can be

attributed to the location of the central file system directory on node 1. If

a work request arrives at node 1, all resource allocation can be performed

without requiring the transmission of any control messages. The only control

messages needed are those necessary to activate the file processes for each

file named in the work request. These messages are transmitted once the files

I

Page 48 THE SIMULATION EXPERIMENTS Section 5

UNIDIRECTIONAL RING

Bandwidth Object and Data File Object and Data File
(bytes/Aec) at Node 1 at Node .

1200 44> >2=3 4>1 =3>2
50,000 4 > 1 > 2 = 3 4 > 1 = 3 > 2
100,000 4 > 1 > 2 = 3 4 > 1 = 3 > 2
500,000 4 > 1 = 2 = 3 4 > 1 = 2 = 3

BIDIRECTIONAL RING

Bandwidth Object and Data File Object and Data File
(bytes/sec) at Node 1 at Node 3

1200 4 > 1 > 2 = 3 4 > 1 = 3 > 2
50,000 4 > 1 > 2 = 3 4 > I = 3 > 2
100,000 4 > 1 > 2 = 3 4 > 1 = 2 = 3
500,000 4 > 1 = 2 = 3 4 > 1 = 2 = 3

STAR

Bandwidth Object and Data File Object and Data File
(bytes/sec). at Node 1 at Node g

1200 4 > 1 > 2 = 3 4 > 1 = 3 > 2
50,000 4 > 1 = 2 = 3 4 > 1 = 2 = 3
100,000 1 > 1 = 2 = 3 4 > 1 = 2 = 3
500,000 4 > 1 = 2 = 3 4 > 1 = 2 = 3

FULLY CONNECTED NETWORK

Bandwidth Object and Data File Object and Data File
(bytes/sec) at Node 1 at Node '

1200 4 > 1 > 2 = 3 4 > 1 = 3 > 2
50,000 4 > 1 = 2 = 3 14 > 1 = 2 = 3

100,000 4 > 1 = 2 = 3 14 > 1 = 2 = 3
500,000 4 > 1 = 2 = 3 14 > 1 = 2 = 3

TREE

Bandwidth Object and Data File Object and Data File
(bytes/sec) at Node 1 at Node .

1200 4 > 1 > 2 = 3 4 > 1 = 3 > 2
50,000 4 > 1 > 2 = 3 4 > 1 = 3 > 2
100,000 4 > 1 > 2 = 3 4 > 1 = 3 > 2
500,000 4 > 1 = 2 = 3 4 > 1 = 2 = 3

Notation: i > j means response time using model i is greater than that using j
i = j means response time using model i is similar to that using J.

Figure 14. Comparison of the Response Times for Models 1, 2, 3, and 4
that Were Obtained from the Group 1 Experiments in Which
Work Requests Arrived at Node 1

Section 5 THE SIMULATION EXPERIMENTS Page 49

UNIDIRECTIONAL RING

Bandwidth Object and Data File Object and Data File
(bytes/sec) at Node 1 at Node I

1200 2 > 4 > 1 > 3 2 > 1 = 3 > 4
50,000 4 > 2 > 1 > 3 4 > 1 = 2 = 3
100,000 4 > 1 = 2 > 3 4 > 1 = 2 = 3
500,000 4 > 1 = 2 = 3 4 > 1 = 2 = 3

BIDIRECTIONAL RING

Bandwidth Object and Data File Object and Data File
(bvtes/sec) at Node 1 at Node 1

1200 4>2>1 >3 4>1 =3>2
50,000 4 > 1 = 2 > 3 4 > 1 = 2 = 3
100,000 4 > 1 = 2 = 3 4 > 1 = 2 = 3

500,000 4 > 1 = 2 = 3 14 > 1 = 2 = 3

STAR

Bandwidth Object and Data File Object and Data File
(bytes/sec) at Node 1 at Node 1

1200 4>I1 = 2 >3 4 >1 = 3 >2
50,000 4 > 1 = 2 > 3 4 > = 3 > 2

100,000 4 > 1 = 2 = 3 4 > 1 = 2 = 3

500,000 4 > 1 = 2 = 3 4 > 1 = 2 = 3

FULLY CONNECTED NETWORK

Bandwidth Object and Data File Object and Data File
(bytes/see) at Node 1 at Node I

1200 4 >2 > 1 >3 4 >2 > 1 = 3
50,000 4 > 2 = 1 > 3 4 > 1 = 2 = 3
100,000 4 > 1 = 2 = 3 4 > 1 = 2 = 3
500,000 4 > 1 = 2 = 3 4 > 1 = 2 = 3

TREE

Bandwidth Object and Data File Object and Data File
(bytes/see) at Node 1 at Node I

1200 4 > 2 > 1 > 3 4 > 2 > 1 =3
50,000 4 > 1 = 2 > 3 4 > 2 > 1 = 3
100,000 4 > 1 = 2 = 3 4 > 1 = 2 3
500,000 14 > 1 = 2 = 3 4 > 1 = 2 = 3

Notation: i > j means response time using model i is greater than that using J
i = j means response time using model i is similar to that using J

Figure 15. Comparison of the Response Times for Models 1, 2, 3, and 4
that Were Obtained from the Group 1 Experiments in Which
Work Requests Arrived at Node 2

Page 50 THE SIMULATION EXPERIMENTS Section 5

have been allocated. If the work request arrives at node 2, a message must be

sent to node 1 in order to allocate the resources. Once the resources have
been allocated, the messages to activate file processes can be sent.

Therefore a two stage operation with two sets of messages results from this

scenario.

XFDPS.1 and XFDPS.3 provide an alternate strategy which explains their

superior performance to XFDPS.2 when the work request arrives at node 2. In
these models, file allocation and file process activation are accomplished

with one message because the directory for a file and the file itself reside

on the same node. Therefore, once a file has been allocated, the file process

can be activated with an intranode operation.

In all but two cases, XFDPS.4 results in the largest response time of

all the models. Only when the work request arrives at node 2 in a network

consisting of a unidirectional ring with a bandwidth of 1200 bytes per second

does this model perform better than the other models. This particular

topology provides the longest paths between nodes thus making it quite suscep-

table to communication problems. Model XFDPS.4 performs better at low band-

widths than the other models for this particular topology because only one

message is present on the communication net once a work request is being

processed. During the resource allocation phase, the update vector (UPV) cir-

culates about the ring; and, after this step, the control vector (CV) is

present on the ring. In all other models, multiple messages are utilized to

process a work request; thus, at low bandwidths, message throughput becomes a

problem.

Finally, the outstanding performance of XFDPS.3 when the object and data

files named in a work request reside on the same node as the work request

should be noted. This is a clear demonstration of the savings possible with

this policy. One should also note that the performance of XFDPS.1 and XFDPS.3

are identical when the named files are on a node different than the one

receiving the work request.

5.3GROUPZ

The first set of experiments demonstrates fundamental differences in the

performance of the models when handling individual work requests, but this

Section 5 THE SIMULATION EXPERIMENTS Page 51

type of experiment can often be deceiving. When multiple work requests are

processed concurrently, the simultaneous demands on resources can result in

unexpected delays which cannot be anticipated with the data obtained from the

first set of experiments.

5.3.1TMaenvrmn

The goal of this set of experiments is to simulate and examine a produc-

tion environment. It would be desirable to establish identical loads for all

experiments, but the nature of the problem makes this impossible. The basic

environment consists of a network of five nodes with ten user terminals

attached to each node. To provide an identical load, one would have to

guarantee that the work requests will be presented to the simulator in the

same order for each experiment. The control models, though, are composed of

autonomous components and by their design will process work requests on each

node at different rates as demonstrated by the results of the group 1

experiments. This implies that even if the work requests at each node are

presented in the same order, the load provided to the simulator will be

different because the timing of work request arrivals may vary.

To clarify this point, consider the following example. Assume the loads

provided to nodes 1 and 2 are as shown in Figure 16. This figure depicts the

order in which the work requests arrive at each node. Because the control

models process work requests at different rates, different processing

sequences are obtained for the control models. Figure 17 depicts the sequence

for model I and Figure 18 depicts that for model 2. Thus, although the loads

at each node are controlled, it is impossible to control the sequence of work

requests on all nodes collectively.

Load at Node 1 Loadat Node 2

WRi WR5
WR2 WR6
WR3 WR7
WR4 WR8

Figure 16. Example of Loads Presented to Two Nodes

i

Page 52 THE SIMULATION EXPERIMENTS Section 5

Node 1 WRI WR2 WR3 WR4

Node 2 WR5 WR6 WR7 WR8

Time--

Figure 17. Sequence of Work Request Arrivals When Using Model 1

Node 1 WRI WR2 WR3 WR4

Node 2 WR5 WR6 WR7 WR8

Time--

Figure 18. Sequence of Work Request Arrivals When Using Model 2

Since identical loads cannot be provided, we attempt to construct an

unbiased load. Each terminal issues its first work request at a time measured

in seconds corresponding to an integral value chosen at random from the inter-

val (1, 15]. After a work request has completed, the arrival time (measured

in seconds) of the next work request from the terminal is again chosen by

selecting a random value in the interval [1, 15] as the delay from the

termination of the previous work request. The work requests are chosen at

random from a common pool of work requests. Each work request in the pool is

of the type described earlier in section 5.1.2 naming object-data file pairs

in which both the object file and data file reside on the same node. There is

an equal number of object-data file pairs on each node. Therefore, the

probability that a newly arrived work request names an object-data file pair

residing on node i is 1/5 for i = 1, 5.

In order to obtain steady state data, the taking of measurements is

delayed until a simulation time of 30 seconds after the start of the test.

This insures that all terminals are active and are into their normal

activities. Measurements are then taken until 330 seconds into the simulation

thus providing a measurement interval of 5 minutes. This provides observation

of the processing of over 200 work requests. Longer simulation intervals,

though desirable, are not practical due to the extensive computation necessary

Section 5 THE SIMULATION EXPERIMENTS Page 53

to simulate the level of detail provided by the control models being examined.

It has been observed for most runs that over three hours of computing time on

a Prime 550 are required. (The performance of the Prime 550 is approximately

80% of that of an IBM 370/158 and 35% of that of a VAX 11/780 [Henk8l].) Over

160 simulation runs have been made during the process of this research.

In this set of experiments, the following three factors are varied: 1)

control model, 2) topology, and 3) bandwidth. Experiments utilizing all pos-

sible combinations of these factors are run. The results of these experiments

are provided in Appendix 2.2.

5.3.2 aa

The most distinguishing feature of the results of these tests is the

lack of significant variation in average response time for experiments utiliz-

ing all models and topologies with bandwidths 1200 bytes per second or larger.

In all cases, the LINK QUEUEs have an average lngth of between one and two

messages, implying that the communication system does not prove to be a bott-

leneck.

To demonstrate that the values for average response time could be

explained by delays due to the intranode multitasking of processes,

experiments utilizing the extremely high bandwidth of 2.5 million bytes per

second are conducted. The results are very similar to those obtained with

much lower transmission rates. In addition, a simulation of a single node

network is conducted. This also results in an average response time not

significantly different. (The results of the single node simulation are

provided in Appendix 2.3.)

In most cases when the bandwidth is lowered to values below 600 bytes

per second, a statistically significant increase in response times is obser-

ved. In most cases, either XFDPS.2 or XFDPS.4 provided the smallest average

response time values. It is necessary, though, to reduce the bandwidth to

extremely low values in order to observe these differences, thus leading us to

conclude that as far as constrasting the various models is concerned, the data

is rather inconclusive.

Finally, the results of the experiments with model XFDPS.2 provide one

further observation. Recall that in this model a single centralized file

system directory is maintained. All file system requests are handled by the

Page 54 THE SIMULATION EXPERIMENTS Section 5

node housing this directory. Therefore, one would expect the performance of

this node to be somewhat degraded due to the control activity required to

satisfy the file system requests. The results, though, show that this is not

the case. The average response times for work requests arriving at the node

where the central directory is maintained (node 1) do not differ significantly

from those on other nodes. This result implies that the amount of file system

management work is rather negligible, thus, it does not lead to any per-

formance degradation.

5.4 INGLE I= NETWOKI EUPI R

5.4.1 Mahenroa

This set of experiments is considered separately from those described

above because its purpose is not to analyze the relative performance of the

control models. These experiments are designed to provide a standard upon
which the other results can be compared in order to determine the impact of

distributed processing on average response time for work requests.

The configuration of the single node comprising the network in this set

of experiments is identical to that for each node in the other experiments.

The work requests name object-data file pairs and the script for the object

file is the same as that employed in the first two groups of experiments.

Since there is no internode communication, the choice of the control model is

of no consequence, and therefore XFDPS.1 is arbitrarily selected.

5.14.2 ObseraJig~
Five simulations are conducted and the results of those runs are

presented in Appendix 2.3. The values for average response time from these

experiments are similar to those found in the first group of experiments when

bandwidths greater than 600 bytes/sec are used.

IL

Section 6 CONCLUSIONS Page 55

SECTION 6

CONCLUSIONS

6.1 QAITJATIE ASPE TSO.HE-MOD=L

The evaluation of the control models would be incomplete if considera-

tion were given only to the quantitative results provided by the simulation

experiments. It is also important to examine certain qualitative aspects of

the models which were not quantitatively evaluated. These aspects include the

ability to provide fault-tolerant operation (e.g., graceful degradation and

restoration), the ability for the system to expand gracefully, and the ability

to balance the system load.

6.1.1 iFDFs.1L

The XFDPS.1 model is a truly distributed and decentralized model of

control. In this model, resources are partitioned along node boundaries and

managed by components residing on the same node as the resource. This design

enables the system to remain in operation in the presence of a failure. In

such a situation, those nodes not available are simply not contacted when

queries concerning resources are made. The failed nodes are also not

considered as locations for the execution of tasks during the formulation of

the work distribution and resource allocation decision.

This model of control requires some activity on the part of all nodes in

order to satisfy each work request. There is no single node that is by design

supposed to receive any more activity than any other node; instead, the work

is spread across all nodes. In addition, global information for the work

distribution and resource allocation decision is obtained for each work

request as it is processed. This global data enables the control to better

balance the load across the network.

This control model is not without its problems. The global searches for

resources that occur for every work request may be unnecessary (e.g., in those

instances in which only local resources are required). Short local jobs

therefore suffer at the expense of the longer Jobs utilizing non-local resour-

ces.

j

Page 56 CONCLUSIONS Section 6

6.1.2 XFDPS.Z

XFDPS.2 utilizes a single centralized file system directory. On the

surface, this model appears to be simple to implement. A central directory is

maintained, and all file system queries are sent to the node housing that

directory. However, problems result when fault-tolerant operation is desired.

No longer can a single central directory be maintained because the loss of the

node housing the directory would be catastrophic. Alternative strategies

which provide for fault-tolerant operation (see for example Garcia-Molina's

technique described in [Garc79] for providing fault tolerance in a centralized

locking distributed data base system) significantly complicate the design of

the control as well as require a significant expenditure of resources in order
to recover from a failure. It should be noted that the simulation of XFDPS.2

does not account for the overhead required to provide fault-tolerant

operation. Therefore, the average work request response times observed in the

experiments are lower than would be expected if the necessary control features

for providing fault-tolerant operation were present.

Model XFPDS.2 also has problems with growth. When a new node is

introduced into the system, a large amout of work is required to update the

central directory to add the resources of the new node. This factor can be

quantified and will be the subject of future experiments.

6.1.3 XFDES.3

The XFDPS.3 model is similar to XFDPS.1. It differs in its policy for

obtaining file availability information. First a local search is made. If

all resources are found, they are utilized; otherwise, a global search for

resources is conducted. As described in Section 5, this model provides faster

response to work requests utilizing only local resources as expected. Due to

its information gathering policy, the potential for utilizing distant resour-
ces in order to balance the load is sacrificed because resource availability

on other nodes may never be considered.

6.1.4 MM-.

XFDPS.4 utilizes redundant copies of the file system directory on all

nodes. Access to the directory is restricted to the node possessing the

control vector that is passed among the nodes of the network. This model

tends to work somewhat like a batch system by delaying file system requests

Section 6 CONCLUSIONS Page 57

until the control vector (CV) is received and processing these requests as a
batch.

The presence of the replicated file directory implies that there is both

duplication of information storage and duplication of effort as consistency is

maintained across the replicated copies. Since file system requests are

delayed until the CV arrives, jobs with very short service times may

experience unusually large response times. Finally, as with XFDPS.2, the

introduction of a new node requires a large amount of work in order to update

the replicated directories.

6.1.5 XFDPS..£

XFDPS.5 is nearly identical to XFDPS.1, differing only in its policy of

not locking or in any way reserving resources prior to the formulation of a

work distribution and resource allocation decision. With this policy, resour-

ces are not expected to be needlessly tied up in most cases. A problem does

exist if the chosen resources cannot be locked once selected for allocation.

In this case, a new resource allocation decision must be made and already

allocated and locked resources may need to be released.

6.1.6 UDp.i
XFDPS.6 differs from XFDPS.1 in the manner in which the task graph and

task activation are handled. In this model, the tasks of a work request that

are chosen to execute on the same node are presented to the PROCESS MANAGER of

the selected node collectively. A task graph identifying this collection of

tasks is constructed and task activation and termination are handled by the

PROCESS MANAGER. Thus, the TASK SET MANAGER need send only one message to

each of the nodes utilized by the work request in order to activate all tasks.

In addition, only one termination message is received from each node. Further

savings are provided because the PROCESS MANAGER on the node where the tasks

are executing can immediately release the resources utilized by the tasks as

each task terminates.

6.2 CONCLUSIONS

One must remember when analyzing the results in Appendix 2 that only

control message traffic is present during these simulation experiments. The

simulation experiments may be inconclusive in establishing the relative merits

Page 58 CONCLUSIONS Section 6

of the various models. They do, though, demonstrate the utility of the fully

distributed processing concept. Even networks with communication links pos-

sessing low bandwidths appear to be feasible candidates for fully distributed

processing if the message traffic is held mainly to control messages. In

particular, the experiment with the single node network leads one to expect

that there will be little or no performance loss experienced with an FDPS.

One of the most important results of this research is the production of

a simulator for the analysis of fully distributed processing systems. The

experience gained from the simulator has been the basis for the proposal of

several interesting experiments to be conducted in the future.

Section 7 FUTURE EXPERIMENTS Page 59

SECTION 7

FUTURE EXPERIMENTS

This work has suggested several future experiments. First, networks of

increasing numbers of nodes, possibly 10, 15, and 20 node networks, will be

investigated to determine at what point the utility of the various models is

lost. In addition, experiments with both user message traffic and control

message traffic will be investigated in order to observe the sensitivity of

the various models in the presence of a busy communication system. Different

resource allocation and work distribution algorithms will be instrumented into

the simulator in order to determine under what conditions each algorithm is

appropriate.

The issue of the dynamic addition and deletion of resources will also be

examined. This will demonstrate how gracefully the various models can adapt

to a growing system. These experiments will also examine the fault-tolerant

capabilities of the various models.

I

References Page 61

[Akin8O] Akin, T. Allen, Flinn, Perry B., and Forsyth, Daniel H., "User's
Guide for the Software Tools Subsystem Command Interpreter (The
Shell)," School of Information and Computer Science, Georgia
Institute of Technology, 1980.

[Davi79] Davies, D. W., Barber, D. L. A., Price, W. L., and Solomonides, C.
M., Computer Networks A= Their P l, John Wiley and Sons,
1979.

[Ensl78] Enslow, Philip H., Jr., "What is a 'Distributed' Data Processing
System?" Computer (January, 1978): 13-21.

[Ensl81] Enslow, Philip H., Jr., and Saponas, Timothy G., "Distributed and
Decentralized Control in Fully Distributed Processing Systems - A
Survey of Applicable Models," Technical Report No. GIT-ICS-81/02,
Georgia Institute of Technology, February, 1981.

[Garc79] Garcia-Molina, H., "Performance Comparison of Update Algorithms for
Distributed Databases, Crash Recovery in the Centralized Locking
Algorithm," Progress Report No. 7, Stanford University, 1979.

[Henk81] Henkel, T., "Superminis: An Alternative," CoMputerworld (July 13,
1981): 17-18.

[Jens78] Jensen, E. Douglas, "The Honeywell Experimental Distributed Proces-
sor - An Overview," Computer (January, 1978): 28-38.

[Sapo80] Saponas, Timothy G., and Crews, Phillip L., "A Model for
Decentralized Control in a Fully Distributed Processing System,"
COMPCON FU bal (September, 1980).

FMIMNGZ1-O PAZ %A.AM-NOT FYIJ&D

Appendix 1 CONTROL MODEL PSEUDO CODE Page 63

APPENDIX 1

CONTROL MODEL PSEUDO CODE

1.1 2SEUO A FR x . CONTRQL MEL

1.1.1 System initiator

1: orocess system initiator;
2: Every node possesses one of these processes. This process
3: initiates a node in the network by assigning 'taskset_manager'
4: processes to each connected user terminal, activating the
5: 'file-systemmanager' process, and activating the
6: 'processor utilizatiornmanager' process. }
7:
8: geain
9: for every attached user terminal i _42

10: taskset manager (TERMINAL, i);
11: endfor;

12: file-system-panager;
13: processorutilizationjmanager;
14: end systeminitiator;

1.1.2 I&&AIeManager

1: process tasksetmanager (case inputorigin: inp_orig -f
2: TERMINAL: (term: terminal_address);
3: CMNDFILE: (fd: filedescriptor)
4: end);
5: { Every terminal and every executing command file are assigned
6: a 'taskset manager' process. When a process of this type
7: is activated, one of two sets of parameters is passed to it
8: depending upon the source of input to the process. If the
9: process is assigned to handle input from a terminal, the
10: address of the terminal is provided. If the process is
11: assigned to handle input from a command file, the file
12: descriptor for the command file is provided.
13:
14: x ar
15: tg: taskgraphpointer;
16: commandline: string;
17: msg: message__pointer;
18:
19: betgin
20: while <either the terminal is attached or the end
21: of the file has not been reached> do
22: <get the next work request and store it in command_line>;
23: new (tg);
24: parse (commancLline, tg);
25: <send a message of type M1 (file availability request) to
26: the file._asystemjnanager on this node that contains the
27: names of files need for this work request>;

F-Z

-+ RIL~ PA +LE.4t1~~

Page 64 CONTROL MODEL PSEUDO CODE Appendix I

28: <send a message of type M2 (processor utilization request)
29: to the processor_utilizationmanager on this node>;
30: <wait for a message from processorutilizationmanager>;

* 31: <store processor utilization information in tg^>;
32: <wait for a message from filesystem_manager>;
33: <store file availability information in tg^>;
34: if workdistributor_and resourceallocator (tg) ERR then
35: { work distribution and resource allocation
36: decision could not be made }
37: <report error>;
38: if input-origin = CMNDFILE then
39: exit { leave the loop }
40: else
41: next { next iteration of loop }
42: endif;
43: endif;

44: <send a message of type M3 (file lock and release request)
45: to the file_systemnmanager on this node>;
46: <wait for a message from file._systemmanager>;
47: iL <all locks could not be applied> then
48: <report error>;
49: <send a message of type M4 (file release request)
50: to the file systeaLmanager on this node>;
51: if input origin m CMNNDFILE then
52: exit {leave the loop}

53: else

54: next { next iteration of loop }
55: endif;
56: endif;
57: for <all files chosen to be copied before execution> AQ
58: <send a message of type M5 (file copy request) to the
59: file_systemmanager on this node>;

60: iL <files need copying> then
61: <wait for a message from the filesystemmanager>;
62: eidif
63: fr <each node i chosen to execute parts of the
64 : work request> AQ
65: <send a message of type M6 (process activation request)
66: to the processmanager on node i>;
67: endfor;
68: repeat
69: <wait for a termination message from a processmanager

70: or a request to terminate the command file from
71: the processmanager that activated this
72: tasksetanager>;
73: IL <this is a termination message from a
74: process_manager> Q=
75: <mark the terminated task as completed in tg^>;
76: <send a message of type M4 (file release request)
77: to the file.systempanager on this node>;

Appendix 1 CONTROL MODEL PSEUDO CODE Page 65

78: IL <the termination status indicated that the
79: process terminated due to an error> .hn
80: f29 <each node i still running parts of this
81: work request> d
82: <send a message of type M7 (process kill request)
83: to the processmanager on node i>;
84:

endfor;

85: endif;
86: &LIM
87: fr <every task of the work request> A2
88: I <the task has not completed> the
89: <send a message of type M7 (process kill request)
90: to the process manager responsible for
91: the task>;
92: e i ;
93: en ;
94: break; { exit the loop }
95: endif;
96: until <all tasks have terminated>;
97: endwhile;
98: end task-set_manager;

1.1.3 Z.eSystem Mr _ge

1: process file system_manager;
2: Every node possesses one of these processes. This process
3: satisfies various requests concerning the file system.
4: This is accomplished by communicating with the fileset_managers
5: on all nodes. }
6:
7: ya
8: msg: messagepointer;
9: favptr: file_availability-recpointer;

10: flrprt: file_lockand_releaserecpointer;
11:
12: begin
13:
14: <wait for a message of any type (let msg point to
15: the message)>;
16: case msg-.messagetype of
17: Ml: { file availability information request }
18: bein
19: new (favptr);
20: <insert the record favptr points to into the
21: list of favrecs>;
22: <record the names of the files identified in msg >;
23: f = <each node i> do
24: <send a message of type M8 (file availability
25: request) to the file_setjmanager on node i
26: that contains the names of all files>;
27: e ;
28: end;

il ,1'

Page 66 CONTROL MODEL PSEUDO CODE Appendix 1

29: M3: { file lock and release request I
30: beskin
31: new (flrptr);
32: <insert the record flrptr points to into the

33: list of flr_recs>;
34: fr <each node i> Ao
35: <send a message of type M9 (file lock and
36: release request) to the fileset_manager
37: on node i that contains the names of all
38: files from msga that are identified
39: as being located at node i>;
40: e_9o;
411:
42: M4: { file release request }
43: bein
44: f= <each node i> do
45: <send a message of type M10 (file release
46: request) to the fileset manager on
47: node i that contains the names of all
48: files from msg^ that are identified as
49: being located at node i>;
50: ndor;
51: SAM
52: M5: t file copy request }
53: begin
54: new (fmvptr);
55: <insert the record fmvptr points to into the list
56: of fmv_recs>;
57: fZr <each file named in msga> do
58: <insert the file name into fmvptr^>;
59: <send a message of type M11 (create file request)
60: to the file__setmanager on the node where
61: the file is to be copied>;
62: endfor;
63: mid;
64: M12: f file availability info from file_set._manager }
65: begin
66: <let favptr point to the fav_rec that msg^
67: is a response to>;
68: <fill in the availability information in favptra>;
69: LL <responses from all file_setjanagers
70: have been received> then
71: <send a message of type M16 (file availability
72: information) to the taskset_manager
73: identified by a field of favptr^>;
74: endif;
75: Aid;
76: M13: { file lock and release results from file_set_manager }
77: benz
78: <let flrptr point to the flr_rec that msg^
79: is a response to>;
80: <fill in the lock and release results in flrptra>;

J

Appendix 1 CONTROL MODEL PSEUDO CODE Page 67

81: IL <responses from all filesetmanagers
82: that were contacted have been received> MM
83: <send a message of type M17 (results of file
84: lock and release request) to the taskset_manager
85: identified by a field of flrptr^>;
86: endif;
87: end;
88: M14: [result of file creation request from file_set_manager)
89:
90: (This message is part of a series of messages
91: used to copy a file from one node to another.
92: At this point, file processes have been activated
93: at both the sending and receiving nodes. The
94: next step is to send a signal to the sending
95: process to begin transmission. I
96: <send a message of type M18 (signal to begin copy)
97: to the sending file process in the copy
98: operation>;
99: ed;

100: M15: [copy completion signal from a file process I
101: beigin
102: <let fmvptr point to the fmv_rec that msg^
103: is a response to>;
104: <record in fmvptr4 that the copy operation
105: indicated in msg^ has been completed>;
106: f <all copy operations have been completed> tA
107: <send a message of type M19 (results of file
108: copy request) to the task_set._manager
109: identified by a field of fmvptr^>;
110: endif;
111: Aid;
112: endcase;
113: endlooD;
114: end filesystemmanager;

1.*1.* 4 Processor UtiiZjJ=U. HlaAg

1: process processorutilization_manager;
2: { Every node possesses one of these processes. This process
3: records the latest processor utilization information received

4: from each node's processorutilizatiorunonitor; it provides
5: task_set_managers with this information on demand; and
6: if it does not hear from a processor_utilizationjmonitor
7: within a particular interval of time, it records the processor
8: as down and attempts to contact that processor_utilizatiorLnonitor. }
9:

10: YA
11: msg: message_pointer;
12: pcutil: arrAX (NODES_OF_THENET] Rf pc_.utilization;
13:

Page 68 CONTROL MODEL PSEUDO CODE Appendix 1

14: begi

15:
16: <wait for a message of any type (let mag point to
17: the message)>;
18: case msgA.messagetype of
19: M2: f pC utilization information request }
20:
21: <send a message of type M20 (pC utilization
22: information) to the taskset_manager that
23: sent the message and is identified in msg^>;
24: MA;
25: M3: f pc utilization information from monitor }
26:
27: <record information in msg^ in pcutil [msg^.node]>;
28: <reset deadman timer for information arriving
29: from node msg*.node>;
30: end;
31: M22: I deadman timer signal - this indicates that a
32: processor_utilizatiornmonltor has not reported
33: within the required time }
34:
35: pautil Emsg^.node] := NOT_AVAILABLE;
36: <send a message of type M23 ("are you alive?"
37: query) to the processorutilization_monitor
38: on node msg^.node>;
39: en;
40: endease;
41: endloov;
42: And processorutilization_manager;

1.1.5 P kQUInoDr Utilation Monitor

1: p processor_utilizationmonitor;
2: { Every node possesses one of these processes. This process
3: records various performance measurements and computes a
4: processor utilization value that is periodically transmitted
5: to all processor_utilizatioru-managers. }

6:
7: beg~n
8: J&=
9: <gather performande measurements>;

10: <compute processor utilization value>;
11: fo2r <each node i> A
12: <send a message of type M21 (processor utilization
13: information) to the processorutilizationr.manager
1I: on node i>;
15: endfor;
16: <sleep until it is time to gather more measurements>;
17: <wait until it is time to gather more measurements
18: or a message from a processorutilization manager
19: arrives>;
20:
21: anti processor_utilization_monitor;

Appendix 1 CONTROL MODEL PSEUDO CODE Page 69

1.1.6 frgaess !Kart

1: process processmanager;
2: { Every node possesses one of these processes. This process

3: manages the processes that are executing on its node. }

4:
5: vat
6: pcbptr: processcontrol block__pointer;

7: process name_table: processnametopcbptrmap;
8: msg: message__pointer;
9:

10: begin

11: o2
12: <wait for the arrival of a message (let msg point

13: to the message)>;
14: gase msg*.messagetype f-

15: M6: { process activation request }

16: begin
17: Lf <process type is an object file> then

18: new (pcbptr);
19: <record process identifying information

20: and pcbptr in processname table>;

21: <fill in the necessary information in pcbptr^,?;

22: <initiate the loading of the process>;

23: AI=
2,4: task_setmanager (CMNDFILE, msg^.fileledescriptor);

25: <record process identifying information

26: and task_set_manager identification in

27: processnametable>;
28: endif;
29: MA;
30: M7: (process kill request }

31: begi

32: <find the process in process_nametable>;

33: IL <the process is an object file> then

34: <terminate the process>;

35: <unload the process>;

36: <dispose of the process control block>;

37: <send a message of type M24 (process

38: termination message) to the taskssetmanager

39: that activated the process>;

40: ese { the process is a command file }

41: <send a message of type M25 (request to terminate

42: the execution of a command file) to the

43: task._setmanager executing this command file>;

44$: endif;

45: &]A;
46: endcase;
47: edop
48: s= process__manager; I

L

Page 70 CONTROL MODEL PSEUDO CODE Appendix 1

1.1.7 Zn set Magmer

1: proces fileLsetmanager;
2: { Every node possesses one of these processes. This process

3: manages the files located on its node. }
4:
5: xar
6: msg: message__pointer;
7: filedirectory: file_locatiorL information;
8:
9: beizin

10: "2
11: <wait for the arrival of a message (let msg point
12: to the message)>;
13: case msg .message-type of
14: M8: { file availability request }
15:
16: for <each file named in msg^> g2
17: <search for the file>;
18: J[<the file was found> then
19: If <the file is free> then
20: <reserve the file>;
21: <record the desired access to the file>;
22: <note that the file is available>;
23: eA
24: I <the desired access to the file
25: is READ> and. <the access already
26: granted to the file is READ>]h
27: <note that the file is available>;
28: eLe
29: <note that the file is not available>;
30: endi;
31: endif;
32: els
33: <note that the file is not available>;
34: endif;
35: endfor;
36: <send a message of type M12 (file availability
37: information) to the file._system_manager
38: on node msg^.node>;
39: ed;
40: M9: { file lock and release request }
41: bii
42: fZr <each file in msg^> Ao
43: <search for the file>;
44: IL <the file was found> thn
45: <lock or release the file as requested>;
46:
47: <note that the request could not be satisfied>;
48: edf
49: e ;

Appendix I CONTROL MODEL PSEUDO CODE Page 71

50: <send a message of type M13 (results of file lock

51: and release request) to the filesystem_manager
52: on node msg^.node>;
53: end;
54: M10: { file release request }
55:
56: for <each file in msg^> 4o
57: <search for the file and release the lock on it>;
58: endfor;
59: end;
60: M11: [file creation request }
61: gi
62: <create an entry for a new file in file_directory>;
63: <activate a file process for the file>;
64: <send a message of type M14 (results of file
65: creation) to the filesystemmanager on
66: node msg^.node>;
67: end;
68: endcase;
69: endloop;
70: end file_set-manager;

1.2 PSEUDO = FOR Th 2F=.Z CONTROL MODEL

1.2.1 SysLm Initiator

Same as XFDPS.1.

1.2.2 TWk SLe Kaar.

XFDPS.1 with the following changes:

25: <send a message of type M2 (file availability request) to
26: the file-systenLmanager on node 1 that contains the
27: names of files needed for this work request>;

44: <send a message of type M3 (file lock and release request)
45: to the file-system_manager on node 1>;

76: <send a message of type M4 (file release request)
77: to the fileLsystemmanager on node 1>;

1.2.3 Zi1 SJ. ten Jlam=

Rrocess fil esystemmanager;
This process resides on node 1 and satisfies various requests
concerning the file system. This process maintains the
centralized file system directory. }

Ya
msg: messagepointer;

II
*1

Page 72 CONTROL MODEL PSEUDO CODE Appendix 1

<wait for a message of any type (let msg point to
the message)>;

case msg .messagetype o
Ml: f file availability information request }

for <each file named in msg^> Aq
<search for the file>;
If <the file was found> hn

for <each node i> d
if <the file is free on node i> then

<reserve the file>;
<record the desired access to the file>;
<note that the file is available on

node i>;

if <the desired access to the file
is READ> = <the access already
granted to the file is READ> the=

<note that the file is available on
node i>;

<note that the file is not available
on node i>;

endif;
endif;

endfor;
else

<note that the file is not available on
any node>;endif;

endfor;
<send a message of type M12 (file availability

information) to the task._setjmanager requesting
the information>;

end;
M3: { file lock and release request }

fr <each file in msg^> Iq
<search for the file>;
if <the file was found and is present

on the node specified> _th=
<lock or release the file as requested>;

<note that the request could not be satisfied>;endif;
endfor;
<send a message of type M13 (results of file lock

and release request) to the taskset_.manager
that made the request>;

3n,

Appendix 1 CONTROL MODEL PSEUDO CODE Page 73

M4: f file release request J

for <each file in msg^> do
<search for the file and release the lock on it>;

end case;
endlooD;

ed fil esystemmanager;

1.2.4 Process Utlzain bL~a

Same as XFDPS.1.

1 .2.5 Processor Utilization Monitor

Same as XFDPS.1.

1.2.6 Process Baaa=

Same as AFDPS.1.

1.3 PSEU CODE O TE XFDPS.-I CQNQL MODEL

1.3.1 Sstam I ar

Same as XFDPS.1.

1.3.2 a.k Lt BML&

Same as XFDPS.1.

1.3.3 £ie XAtem ABMn r

XFDPS.1 with the following changes:

23: <send a message of type M8 (file availability
24: request) to the file_setmanager on the same node

25: as this fileLsysten~nanager>;
26:
27:

69: it <this response is from this node> And
70: <all files have not been found available> thn
71: f_ <every other node i> dg
72: <send a message of type M8 (file availability
73: request) to the file_set_manager on node i>;
74: endfor;
74a: AIM
74b: 1f <responses from all file3setjmnagers have been
74c: received or all files have been found locally> _the

Jl
II

Page 74 CONTROL MODEL PSEUDO CODE Appendix 1

74d: <send a message of type M16 (file availability
74e: information) to the taskset_manager identified
74f: by a field of favptr^>;
74g: endif;
74h: endif;

1.3.4 Process Ulizati anIar.

Same as XFDPS.1.

1.3.5 Procssor Utilzatio±n Mnitr

Same as XFDPS.1.

1.3.6 Process Mgr

Same as XFDPS.1.

1.6.7 File SLt Mnager

Same as XFDPS.1.

1.4 O COD £R T11 DP.4 CONTROL MOD

1.4.1 syste t

Same as XFDPS. 1.

1.4.2 ZA All Manager

Same as XFDPS.I.

1.4.3 FrII System J&ADA

2rocess filesystem-manager;
{ Every node possesses one of these processes. This process

satisfies various requests concerning the file system and
helps maintain the redundant copies of the file system
directory. }

Ara
mag: messagepointer;

IM2
<wait for a message of any type (let msg point to

the message)>;
SAM m3gs.messagetype or

1, M3, M4: (availability, look, and release requests }
kWIA

<place the message on the queue of file system
requests arriving at this node>;

* Appendix 1 CONTROL MODEL PSEUDO CODE Page 75

CV: { control vector }

while <the file system request queue is
not empty> do
<remove a message from the queue (let msg point

to the message)>;
case msg^.message__type 9f

Ml: { file availability information request }

fop <each file named in msg^> 4o
<search for the file>;
11 <the file was found> t

f= <each node i> Ag
1f <the file is free on node i> thM

<reserve the file>;
<record the desired access to the file>;
<note that the file is available on

node i>;

.if <the desired access to the file
is READ> and <the access already
granted to the file is READ> hen
<note that the file is available on

node i>;

<note that the file is not available

on node
i>;

endif;

endfor;

<note that the file is not available on
any node>;

endif;
endfor;
<send a message of type M12 (file availability

information) to the task_set_manager requesting
the information>;

-gid;
M3: { file lock and release request }

for <each file in msg^> do
<search for the file>;
Jf <the file was found and is present

on the node specified> then
<lock or release the file as requested>;

<note that the request could not be satisfied>;endif;
endfor;

Page 76 CONTROL MODEL PSEUDO CODE Appendix 1

<send a message of type M13 (results of file lock
and release request) to the task_setmanager
that made the request>;

M4: file release request }

f=p <each file in msg^> .42

<search for the file and release the lock on it>;endfor;
edaen;

endaile;

<send a message of type UPV (update vector) to the
next node (according to the predetermined
ordering of nodes) containing the changes just
made to the file system directory>;eD;

UPV: f update vector }be-gin
If <this UPV was originated by this node> h

<send a message of type CV (control vector) to
the next node (according to the predetermined
ordering of nodes)>;

<update the file system directory>;
<send the message of type 7PV (update vector)

to the next node (according to the predetermined

ordering of nodes)>;

end;
endcase ;

end file__systemmanager;

1.4.4 Poaess Utilization kign"M

Same as XFDPS.1.

1.4.5 Processor Utilization HQnitor

Same as XFDPS.I.

1.4.6 PoeA UM=

Same as XFDPS.I.

1.5 P MD XIUL? 5DPS.5 CONZOL MODE

1.5.1 .AXL2M Tnltl±aor

Same as XFDPS.1.

Appendix 1 CONTROL MODEL PSEUDO CODE Page 77

1.5.2 Tuk Set Manager

Same as XFDPS.1.

1.5.3 Fle System Manager

Same as XFDPS.1.

1.5.4 Process .UtiliZatI Manager

Same as XFDPS.1.

1.5.5 Processor Ulization Monitor

Same as XFDPS.I.

1.5.6 Process Hanaur

Same as XFDPS.1.

1.5.7 Fj& L& Mge

XFDPS.1 with the following changes:

20: <note that the file is available>;

21:
22:

1.6 PSE ODE ORT= XFDPS.6L CONTR OL NO=E

1.6.1 System Initiator

Same as XFDPS.I.

1.6.2 Ta~k SeI tnat

XFDPS.1 with the following changes:

75: for <each task in the message> Io

76: <mark the task as completed in tg^>;
77: edfa;

87: for <every node i still executing parts of the work

88: request> dg

89: <send a message of type M7 (process kill request)

90: to the processmanager on node i>;

91: endfor;
92:

93:

mI

Page 78 CONTROL MODEL PSEUDO CODE Appendix 1

1.6.3 Ell& ZLsat Hanaer

Same as XFDPS.1.

1.6.4 Process tinj 11z&LJ.Qan

Same as XFDPS.1.

1.6.5 Proessor Uiliatio Monitor

Same as XFDPS.1.

1.6.6 Process Manmer

process process manager;
{ Every node possesses one of these processes. This process
manages the processes that are executing on its node. }

pcbptr: processcontrolblockpointer;

processname_table: processname_topcbptr_map;
subtg: taskgraph__pointer;

msg: message_pointer;

Ioop

<wait for the arrival of a message (let msg point
to the message)>;

case msg^.messagetype oQf
M6: { process activation request }

begin
new (subtg);

frr <each task i im msg^> A2
<record task i in subtg^>;
If <task i names an object file> then

new (pcbptr);
<record process identifying information

and pcbptr in procesname_table>;
<fill in the necessary information in pcbptr^>;
<initiate the loading of the process>;

taskssetmanager (CMNDFILE, msg. fil e_descriptor);
<record process identifying information

and tasksetmanager identification in
processname_table>;

endfor;
<link subtg^ onto the list of subtaskgraphs executing

on this node>;

Appendix 1 CONTROL MODEL PSEUDO CODE Page 79

M7: { process kill request }bestin
<find the subtaskgraph in the list of

subtaskgraphs executing on this node (let
subtg point to the subtaskgraph)>;

*fj <each task i in subtg> do
IL <task i has not completed> then

iL <task i names an object file> tbhe
<terminate the process>;
<unload the process>;
<dispose of the process control block>;
<mark task i as terminated>;

els { the process is a command file }
<send a message of type M25 (request to terminate

the execution of a command file) to the
task_set-manager executing this command file>;endif;

-endif;
endfor;
J.f <all the tasks in subtg^ have completed> then

<send a message of type M24 (subtaskgraph
termination message) to the task.setmanager
that activated the subtaskgraph>;

<remove subtg^ from the list of subgraphs
executing on this node>;

dispose (subtg);

end;

endcase;
endloop;

end process-jmanager;

U

Appendix 2 SIMULATION RESULTS Page 81

APPENDIX 2

SIMULATION RESULTS

2.1 RSUTS0a GROUP _tEPEIMENT

2.1.1 ZEDPS.Q

RESPONSE TIME (see) FOR A SINGLE WORK REQUEST ARRIVING AT NODE 1

UNIDIRECTIONAL RING

Bandwidth 1 Node Where Object and Data Files Reside
1 (bytes/sec) 1 --1 2 _ 4 I 5

1200 1 6.634 1 7.123 1 7.123 I 7.123 1 7.123 1
50,000 1 6.306 1 6.320 1 6.320 1 6.320 1 6.320
100,000 1 6.302 1 6.310 1 6.310 1 6.310 1 6.310

500,000 1 6.299 1 6.303 1 6.303 1 6.303 1 6.303

BIDIRECTIONAL RING

Bandwidth Node Where Object and Data Files Reside
(bytes/see) 1 2 I I 4 1 5

I I I I
1200 6.506 i 6.743 i 6.911 1 6.911 1 6.743

50,000 1 6.302 1 6.308 1 6.313 1 6.313 1 6.308 1
100,000 6.299 1 6.303 1 6.306 1 6.306 1 6.303 1
500,000 6.298 1 6.299 1 6.301 I 6.301 1 6.299

STAR

Bandwidth I Node Where Object and Data Files Reside
(byvtes/sec) I 1 2 R I 2 1 5

I I I I
1200 1 6.380 1 6.617 1 6.617 1 6.617 1 6.617 1

50,000 1 6.298 1 6.304 : 6.304 1 6.304 1 6.304 1
I 100,000 1 6.297 1 6.301 1 6.301 I 6.301 1 6.301 1

500,000 1 6.297 1 6.299 1 6.299 1 6.299 1 6.299

FULLY CONNECTED NETWORK

, Bandwidth Node Where Object and Data Files Reside
A (bytes/see) I 1 I 2 I 3 I 4 5
' I I I I I I

1 I 1200 I 6.380 1 6.617 1 6.617 1 6.617 1 6.617 I
i 50,000 I 6.298 1 6.304 1 6.304 1 6.304 1 6.304 1
I 100,000 1 6.297 I 6.301 1 6.301 I 6.301 1 6.301 1
1 500,000 1 6.297 I 6.299 1 6.299 1 6.299 1 6.299 1

- -

M0~I~lG &~Z .A~-Q~ FJJS

Page 82 SIMULATION RESULTS Appendix 2

TREE

Bandwidth , Node Where Object and Data Files Reside
I (bvteslsee) 1 1 I 2 I I 1 4 I 1 I

I I I I
1200 6.549 1 6.786 1 6.786 1 6.954 1 6.954 1

50,000 1 6.303 1 6.309 1 6.309 I 6.314 1 6.314 1
i 100,000 6.300 1 6.303 1 6.303 1 6.307 1 6.307 I
, 500,000 6.298 1 6.300 1 6.300 1 6.301 1 6.301

RESPONSE TIME (see) FOR A SINGLE WORK REQUEST ARRIVING AT NODE 2

UNIDIRECTIONAL RING

Bandwidth 1 Node Where Object and Data Files Reside
I (bytes/see) 1 I I 3 4 1 5 1

I I I ' I
II I I

1200 1 7.123 6.6374 .123 1 7.123 I 7.123 1
50,000 6.320 1 6.306 1 6.320 I 6.320 I 6.320 1
100,000 1 6.310 : 6.302 1 6.310 1 6.310 1 6.310 1
500,000 1 6.303 1 6.299 1 6.303 1 6.303 1 6.303 1

BIDIRECTIONAL RING

Bandwidth Node Where Object and Data Files Reside
i (bytes/see) 1 1 2 I 1 14 I 5

IIII

1200 1 6.743 6.506 6.743 I 6.911 I 6.911 1
50,000 1 6.308 6.302 1 6.308 1 6.313 1 6.313 1
100,000 I 6.303 1 6.299 1 6.303 1 6.306 i 6.306 1
500,000 6.299 6.298 1 6.299 I 6.301 1 6.301 1

STAR

Bandwidth I Node Where Object and Data Files Reside I
(bvtes/sec) 1 1 , 2 1 q 1 4 I I

' I ' I
III I I

1200 1 6.828 1 6.591 1 6.997 1 6.997 1 6.997 1
50,000 1 6.310 6.304 6.315 1 6.315 6.315
100,000 I 6.304 6.301 1 6.307 I 6.307 1 6.307 I
500,000 1 6.300 I 6.299 1 6.302 1 6.302 1 6.302 I

FULLY CONNECTED NETWORK

Bandwidth I Node Where Object and Data Files Reside
- (bytes/see) 1 1 1 2 1 "1 1 4 1 5 1

1 I I I I I
1200 1 6.617 1 6.380 1 6.617 1 6.617 1 6.617 1

i 50,000 1 6.304 1 6.298 1 6.304 1 6.304 I 6.304 I
100,000 I 6.301 1 6.297 1 6.301 1 6.301 1 6.301 1
500,000 1 6.299 I 6.297 I 6.299 1 6.299 I 6.299 I

Appendix 2 SIMULATION RESULTS Page 83

TREE

Bandwidth Node Where Object and Data Files Reside
(bytes/sec) 1 1 2 3 1 4 1 5 1i i I I

1200 1 6.743 1 6.506 1 6.911 1 6.743 1 6.743 1
50,000 1 6.307 1 6.302 I 6.313 1 6.307 1 6.307 1
100,000 1 6.303 1 6.299 1 6.306 1 6.303 1 6.303 1
500,000 1 6.299 1 6.298 1 6.301 I 6.299 1 6.299 1

2.1.2 FDPR.Z

RESPONSE TIME (see) FOR A SINGLE WORK REQUEST ARRIVING AT NODE 1

UNIDIRECTIONAL RING

Bandwidth 1 Node Where Object and Data Files Reside
,(bvtes/see) 1 2 I , 1 1 , 5 1II I I I I

1200 1 6.295 1 6.784 I 6.784 1 6.784 I 6.784 I
50,000 6.295 1 6.308 1 6.308 1 6.309 1 6.309 1

i 100,000 1 6.295 I 6.303 1 6.303 1 6.303 1 6.303 1
1 500,000 1 6.295 1 6.299 1 6.299 1 6.299 1 6.299 1

BIDIRECTIONAL RING

Bandwidth Node Where Object and Data Files Reside
(bytes/sec) I 1 1 2 1 1 . 4 5i

1200 1 6.295 I 6.532 I 6.700 I 6.700 I 6.532 1
50,000 1 6.295 1 6.301 1 6.306 1 6.306 1 6.301 1

1 100,000 1 6.295 1 6.298 I 6.301 1 6.301 1 6.298 I
500,000 1 6.295 1 6.296 1 6.298 I 6.298 1 6.296 1

STAR

Bandwidth 1 Node Where Object and Data Files Reside I
I(bytes/sec) 1 1 I 2 1 4 1 4 I 5 1

1200 1 6.295 1 6.532 1 6.532 I 6.532 I 6.532 I
50,000 1 6.295 6.301 6.301 1 6.301 1 6.301 1
100,000 1 6.295 I 6.298 I 6.298 1 6.298 I 6.298 I
500,000 1 6.295 1 6.296 I 6.296 I 6.296 I 6.296 1

FULLY CONNECTED NETWORK

' Bandwidth , Node Where Object and Data Files Reside
I (bytes/sec)I 1 I 2 1 - 1 1 1 5

1200 1 6.295 I 6.532 1 6.532 1 6.532 1 6.532 1
50,000 I 6.295 1 6.301 1 6.301 1 6.301 1 6.301 I

i 100,000 I 6.295 1 6.298 1 6.298 1 6.298 I 6.298 I
1 500,000 I 6.295 1 6.296 I 6.296 I 6.296 I 6.296 1

Page 84 SIMULATION RESULTS Appendix 2

TREE

Bandwidth 1 Node Where Object and Data Files Reside :
(bytes/seg) 1 1 2 1 1 1 4 1 5 A

I I
1200 6.295 6.532 i 6.532 1 6.700 1 6.700

50,000 1 6.295 I 6.301 1 6.301 I 6.306 I 6.306 1
100,000 6.295 1 6.298 1 6.298 1 6.301 1 6.301 I
500,000 1 6.295 1 6.296 1 6.296 I 6.298 1 6.298 I

RESPONSE TIME (see) FOR A SINGLE WORK REQUEST ARRIVING AT NODE 2

UNIDIRECTIONAL RING

Bandwidth 1 Node Where Object and Data Files Reside
(bvytes/sec) 1 2 - 14 I 5' ' 'I

II I I

1200 1 6.951 1 6.966 1 7.203 1 7.203 I 7.203 I
50,000 6.313 1 6.314 i 6.321 1 6.321 I 6.321 I
100,000 1 6.306 1 6.306 1 6.310 6.310 1 6.310 1
500,000 1 6.300 1 6.300 1 6.302 I 6.302 1 6.302 1

BIDIRECTIONAL RING

Bandwidth 1 Node Where Object and Data Files Reside
I (bytes/see) I 1 11 5 1.SI I f

i 1200 1 6.573 1 6.588 1 6.783 1 6.867 I 6.783 1
i 50,000 I 6.302 1 6.303 1 6.308 i 6.310 1 6.308
, 100,000 1 6.299 i 6.299 1 6.302 I 6.304 I 6.302 I
1 500,000 1 6.296 1 6.296 1 6.298 1 6.299 I 6.298 1

STAR

' Bandwidth I Node Where Object and Data Files Reside
I (bytes/see) I 1 1 2 I 3 1 I

1 1200 1 6.573 I 6.588 I 6.783 1 6.783 I 6.783 1
50,000 I 6.302 1 6.303 I 6.308 1 6.308 I 6.308 1

1 100,000 1 6.299 1 6.299 1 6.302 6.302 1 6.302
1 500,000 1 6.296 1 6.296 1 6.298 16.298 1 6.2981

FU0LLY COIMECTED NMOOH

SBandwidth Node Where Object and Data Files Reside I
-1 (bvtes/sec) 1 1 1 2 1 3 ,.1 4 I 8i II II I 1 4

1 1200 1 6.573 1 6.588 1 6.699 1 6.699 I 6.699 1
i 50,000 1 6.302 1 6.303 I 6.305 I 6.305 I 6.305 I
1 100,000 1 6.299 1 6.299 1 6.301 1 6.301 1 6.301 1

500,000 I 6.296 I 6.296 1 6.297 I 6.297 I 6.297 I

1,

I

FI

Appendix 2 SIMULATION RESULTS Page 85

TREE

Bandwidth I Node Where Object and Data Files Reside
(bytes/sec) 1 2 3 I 4 1 5

I I I I

1200 6.573 1 6.588 1 6.783 I 6.783 1 6.783i 50,000 : 6.302 1 6.303 1 6.308 1 6.308 1 6.308
100,000 1 6.299 1 6.299 1 6.302 1 6.302 1 6.302

500,000 1 6.296 1 6.296 1 6.298 1 6.298 1 6.298

2.1.3 X.E.S.

RESPONSE TIME (see) FOR A SINGLE WORK REQUEST ARRIVING AT NODE 1

UNIDIRECTIONAL RING

1 Bandwidth Node Where Object and Data Files Reside
1(bytes/sec), 1 2 1 3 I 4 5

I I I I I
I I I I I

i 1200 1 6.295 I 7.123 1 7.123 1 7.123 1 7.123
50,000 1 6.295 1 6.320 1 6.320 1 6.320 1 6.320 1

i 100,000 I 6.295 1 6.311 1 6.311 1 6.311 1 6.311 1
500,000 1 6.295 1 6.303 1 6.303 1 6.303 1 6.303

BIDIRECTIONAL RING

Bandwidth Node Where Object and Data Files Reside
1 (bytes/see) 1 2 i 1 4 5I I

II I II

i 1200 1 6.295 1 6.743 1 6.912 1 6.912 1 6.743 1
i 50,000 : 6.295 : 6.308 : 6.313 1 6.313 1 6.308
i 100,000 : 6.295 1 6.303 : 6.306 1 6.306 1 6.303
i 500,000 : 6.295 : 6.299 1 6.301 1 6.301 1 6.299

STAR

Bandwidth Node Where Object and Data Files Reside I
L(bytes/see) 1 1 2 1 1 1 4 1 5 1I I I,,,I I I

I 1200 6.295 1 6.617 I 6.617 1 6.617 I 6.617 I
50,000 1 6.295 1 6.305 1 6.305 I 6.305 1 6.305 I
100,000 1 6.295 1 6.301 I 6.301 I 6.301 1 6.301 1

I 500,000 1 6.295 1 6.299 I 6.299 I 6.299 I 6.299 I

FULLY CONNECTED NETWORK

Bandwidth Node Where Object and Data Files Reside
I (bytes/sec) I 1 I 2 I I 4 I 5 I

* I I I I I I
I 1200 I 6.295 I 6.617 I 6.617 I 6.617 I 6.617 1
I 50,000 I 6.295 I 6.305 I 6.305 1 6.305 1 6.305 I
I 100,000 1 6.295 1 6.301 I 6.301 1 6.301 1 6.301 I
I 500,000 I 6.295 1 6.299 I 6.299 I 6.299 I 6.299 1

I

& " I I l I

Page 86 SIMULATION RESULTS Appendix 2

TREE

a Bandwidth Node Where Object and Data Files Reside
(bytes/sec) .1 1 2 _ 3 1 4 1 5 1

III I
1200 6.295 J 6.786 1 6.786 1 6.954 1 6.954 1

50,000 6.295 1 6.309 1 6.309 I 6.315 1 6.315 1
I0oo,ooo 6.295 1 6.304 1 6.304 1 6.307 1 6.307 1

i 500,000 6.295 1 6.300 1 6.300 1 6.301 1 6.301 1

RESPONSE TIME (see) FOR A SINGLE WORK REQUEST ARRIVING AT NODE 2

UNIDIRECTIONAL RING

a Bandwidth 1 Node Where Object and Data Files Reside
1 (bytes/sec) 1 1 2 1 3 1 2 1 _ Ia I I I

1200 1 7.123 1 6.295 1 7.123 I 7.123 I 7.123 1
50,000 1 6.320 1 6.295 1 6.320 : 6.320 1 6.320 1
100,000 6.311 1 6.295 1 6.311 1 6.311 1 6.311 1
500,000 1 6.303 1 6.295 1 6.303 1 6.303 1 6.303 1

BIDIRECTIONAL RING

a Bandwidth 1 Node Where Object and Data Files Reside
(bytes/sec) 1 1 2 3 _ .4 1 5 1

a 1200 1 6.744 1 6.295 1 6.744 1 6.912 1 6.912 1
a 50,000 1 6.308 6.295 1 6.308 1 6.314 1 6.314 1
i 100,000 1 6.303 6.295 1 6.303 1 6.306 1 6.306
a 500,000 1 6.299 1 6.295 1 6.299 1 6.301 1 6.301 1

STAR

Bandwidth Node Where Object and Data Files Reside
(bvtes/sec) 1 1 2 1 g 1 4 1 5 ..

a a I II

1200 1 6.829 1 6.295 1 6.997 I 6.997 1 6.997 1
50,000 6.311 1 6.295 I 6.316 I 6.316 1 6.316 1
100,000 1 6.304 1 6.295 1 6.308 1 6.308 1 6.308 1
500,000 1 6.300 1 6.295 1 6.302 1 6.302 1 6.302 1

FULLY CONNECTED NETWORK

Bandwidth Node Where Object and Data Files Reside
I (bytes/sec) 1 1 . 2 1 g 1 1 1 5 I

1 0 I I 6 I I
1200 1 6.617 1 6.295 1 6.617 1 6.617 1 6.617 1

50,000 1 6.305 1 6.295 1 6.305 1 6.305 1 6.305 I
1 100,000 1 6.301 1 6.295 1 6.301 1 6.301 1 6.301 1
1 500,000 1 6.299 1 6.295 1 6.299 I 6.299 1 6.299 1

Appendix 2 SIMULATION RESULTS Page 87

TREE

Bandwidth I Node Where Object and Data Files Reside
(bytes/sec) 1 1 I 2 4 1 4 I 5

SI I I I I
1200 1 6.743 1 6.295 I 6.912 1 6.743 I 6.743 1

50,000 1 6.308 1 6.295 1 6.313 1 6.308 I 6.308 1
100,000 1 6.303 1 6.295 1 6.306 1 6.303 1 6.303 1

i 500,000 1 6.299 1 6.295 1 6.301 I 6.299 1 6.299 1

2.1.4 X S.4

RESPONSE TIME (see) FOR A SINGLE WORK REQUEST ARRIVING AT NODE I

UNIDIRECTIONAL RING

, Bandwidth , Node Where Object and Data Files Reside
I (bvtes/sec) 1 1 2 1 - 1 4 - 5 I' ' I I I

1200 1 6.925 I 7.219 I 7.219 1 7.219 I 7.220 I
I 50,000 I 6.360 1 6.367 I 6.368 1 6.368 1 6.368 1
1 100,000 1 6.353 I 6.358 1 6.358 1 6.358 1 6.358 1
1 500,000 I 6.316 1 6.318 1 6.318 1 6.318 1 6.318 1

BIDIRECTIONAL RING

, Bandwidth I Node Where Object and Data Files Reside
I(bytes/see) I 1 I 2 I 3 I 1 4 I 5 I
I I I I I I I
, 1200 1 6.925 1 7.093 I 7.177 I 7.135 1 7.051 1

50,000 1 6.360 1 6.364 1 6.366 1 6.366 1 6.364 1
1 100,000 1 6.353 1 6.355 1 6.357 1 6.357 1 6.354 1
I 500,000 1 6.316 I 6.317 I 6.318 I 6.317 1 6.316 I

STAR

1 Bandwidth I Node Where Object and Data Files Reside
I (bytes/see) 1 1 1 2 1 . 1 24 1 5 1

I i

1200 1 7.302 I 7.471 I 7.428 1 7.428 1 7.441 1
50,000 1 6.376 1 6.355 I 6.354 I 6.354 I 6.354 I
100,000 1 6.376 1 6.339 1 6.339 1 6.339 I 6.338 I
500,000 1 6.581 1 6.357 1 6.323 I 6.322 I 6.356 I

FULLY CONNECTED NETWORK

Bandwidth Node Where Object and Data Files Reside I
(bytes/see) 1 1 1 2 1 A 14 I 5 I

II I I I I
1200 1 6.925 1 7.093 1 7.051 1 7.051 I 7.051 I

50,000 1 6.360 1 6.364 1 6.363 I 6.363 I 6.364 I
100,000 1 6.353 I 6.355 I 6.355 I 6.354 1 6.354 1I

I500,000 1 6.316 1 6.317 1 6.316 1 6.316 I 6.316

r7

Page 88 SIMULATION RESULTS Appendix 2

TREE

, Bandwidth , Node Where Object and Data Files Reside
j(bytes/see) 1 1 1 2 I I I I

I I I I II
I 1200 1 7.555 1 7.723 I 7.681 I 7.807 1 7.806 1

50,000 6.373 I 6.367 I 6.351 1 6.354 I 6.354 I
I 100,000 1 6.482 1 6.470 1 6.338 I 6.340 I 6.340 1
I 500,000 i 6.385 1 6.448 I 6.354 1 6.335 I 6.335 I

RESPONSE TIME (see) FOR A SINGLE WORK REQUEST ARRIVING AT NODE 2

UNIDIRECTIONAL RING

Bandwidth Node Where Object and Data Files Reside I
.(bytes/see)J 1 1 2 1 3 I 4 I 5 I

III

1200 1 7.051 I 6.757 I 7.051 I 7.051 I 7.051 I
50,000 1 6.362 1 6.354 I 6.362 1 6.362 1 6.362 1

1 100,000 1 6.354 1 6.350 I 6.354 I 6.354 1 6.354 1
1 500,000 1 6.317 1 6.314 1 6.316 1 6.316 1 6.316 1

BIDIRECTIONAL RING
Bandwidth 1 Node Where Object and Data Files Reside

I (bytes/sec) I 1 2 1 4 1 5 J"I I I I I I I
, 1200 1 6.883 I 6.757 1 6.925 1 7.009 I 6.967 I

50,000 I 6.358 1 6.354 1 6.358 1 6.361 1 6.360 1
, 100,000 1 6.350 I 6.350 I 6.352 1 6.354 1 6.353 1
* 500,000 1 6.315 1 6.311 1 6.315 1 6.316 I 6.315 1

STAR

Bandwidth Node Where Object and Data Files Reside I
I (bYtes/see) 1 1 I 2 I 3 1 4 1 5 1

II I I I I
1200 1 7.177 1 7.008 1 7.260 1 7.303 I 7.260 1

50,000 1 6.370 1 6.342 1 6.348 1 6.348 I 6.348 I
100,000 1 6.371 I 6.330 1 6.335 1 6.335 1 6.336 I
500,000 6.580 1 6.319 1 6.355 I 6.321 1 6.320 1

FULLY CONNECTED NETWORK

1 Bandwidth Node Where Object and Data Files Reside
(bytes/see) 1 1 1 2 - 1 1 4 1 5 1

II I I II
1200 6.883 1 6.757 I 6.925 I 6.883 I 6.882 1

50,000 6.358 I 6.35 I 6.358 I 6.358 I 6.357 1
100,000 1 6.350 6.350 6.352 I 6.351 I 6.351

i 500,000 1 6.315 1 6.31 I 6.315 1 6.315 1 6.315 1

Appendix 2 SIMULATION RESULTS Page 89

TREE

: Bandwidth Node Where Object and Data Files Reside I
(bytes/see) 1 1 t 2 1 3 1 4 1 5 1S I I I I I

1200 1 7.345 1 7.177 1 7.428 1 7.302 1 7.302 1
50,000 1 6.355 6.351 1 6.342 1 6.339 1 6.338 I
100,000 1 6.474 6.461 1 6.332 1 6.330 1 6.330 1
500,000 1 6.381 1 6.444 I 6.331 I 6.330 I 6.330 I

2.2 RESULTS DE GROUP Z EXP,2IEN~TS;

2.2.1 XFDPS.2

UNIDIRECTIONAL RING

Ave i
Response 1 Average Length of the READY QUEUE 1

Bandwidth I Time i on Each Node
.(bytes/sec) I (.I 1 1 2 1 3 4 1 5 1

I I I I I I
50 1 182.3 1 1.0 1 1.0 I 1.0 I 1.0 1 1.2

100 169.7 1 1.9 I 1.1 I 1.7 I 2.8 I 1.3 I
200 92.8 1 2.8 1 1.9 1 2.7 1 4.4 11 5.5
600 47.9 1 6.0 1 7.9 1 5.0 1 14.6 1 5.4 1

1200 45.0 1 13.1 J 12.5 1 5.5 1 2.1 ' 5.2 1
50,000 1 48.2 I 18.4 1 2.4 I 7.1 I 10.0 1 2.8 I

100,000 ; 41.6 1 7.1 I 6.0 1 10.4 J 6.6 I 7.0 1
500,000 1 35.7 I 5.4 1 15.4 1 4.6 I 8.5 1 2.3 1

2,500,000 1 42.2 1 8.0 1 10.1 1 12.0 1 7.2 1 2.3 1

BIDIRECTIONAL RING

'I Ave '

I Response 1 Average Length of the READY QUEUE
SBandwidth 1 Time 1 on Each Node

1 (bytes/see) I (Aec)_ I 1 2 1 "3 1 I 5

50 109.4 1.3 1 1.5 1 1.2 1 1.8 1 1.1
5. 100 6.2 4.7 1 3.4 1 3.51 4.11

I 2001 48.8 : 4.1 115.3 1 3.7 1 9.41 3.91
600 1 44.2 I 8.7 1 3.7 I 8.4 1 1.5 1 15.7 1

, 1200 1 40.5 I 7.3 1 6.6 I 6.4 1 5.0 1 11.4 1
50,000 I 43.3 1 10.0 1 15.0 1 4.0 I 4.5 1 4.0 1

I 100,000 1 47.5 1 10.5 1 6.2 1 5.6 I 11.3 I 9.6 1
, 500,000 I 42.5 1 7.3 1 12.4 1 4.8 I 10.8 1 5.9 1
1 2,500,000 I 47.7 I 5.6 I 7.3 1 8.3 I 17.8 1 3.6 1

Page 90 SIMULATION RESULTS Appendix 2

STAR

Ave II Response Average Length of the READY QUEUE 1

Bandwidth I Time on Each Node
I (bytes/sec) I (sea) 1 1 1 2 1 1 1 1 5 1

I I I I III
50 1 133.2 1 2.5 1 1.1 I 1.0 I 1.1 1 2.3 1
100 1 66.4 1 4.0 1 4.9 1 2.4 1 1.3 1 3.9 1
200 1 44.3 .7 1 13.9 4.4 4.1 2.5
600 1 46.8 i 3.6 I 18.3 I 11.8 I 3.1 1 1.9 1

1200 1 46.5 1 5.2 1 8.7 I 5.7 1 8.5 1 12.0 1
50,000 1 41.4 1 5.3 1 7.2 I 11.2 I 7.5 1 7.5 1

100,000 1 45.0 1 3.5 t 19.1 1 6.4 6.0 1 4.1 1
500,000 1 39.9 5.2 1 11.8 1 4.9 1 11.5 1 3.5 1

2,500,000 1 43.0 1 9.2 1 11.9 1 6.7 1 4.7 1 7.2 1

FULLY CONNECTED NETWORK

I Ave iI
1 Response Average Length of the READY QUEUE

Bandwidth : Time i on Each Node
(bytes/sec)1 (sec) J 1 1 2 1 - 1 14 1 5i 1I III

Ii50 147.7 1 10.3 : 2.2 1 4.5 1 2.61 3.8

100 i 43.8 1 11.4 9.9 1 3.2 1 5.3 1 2.9 1
200 1 46.7 I 1.9 1 5.6 1 13.5 1 15.0 1 2.8 1
600 1 42.6 1 4.0 1 4.7 I 7.1 1 11.1 I 11.5 1

1200 1 43.2 1 8.2 1 11.7 1 6.7 1 9.5 1 3.3 1
50,000 1 44.0 1 12.1 1 14.9 1 5.3 1 3.1 1 5.2 1

1 100,000 ; 44.4 1 3.2 1 17.1 1 4.3 I 8.3 1 7.5 1
500,000 I 42.8 1 6.5 I 4.2 I 4.2 1 11.0 I 12.5 1

2,500,000 1 41.3 I 11.9 I 3.9 I 7.5 1 5.3 1 8.9 1

TREE

Ave I I
, Response I Average Length of the READY QUEUE 1

Bandwidth I Time on Each Node I
I (bytes/sec) I Isec) I 1 1 2 1 I 4 5 I I I I I I

50 190.4 1 1.0 1 1.2 I 1.2 1.0 1.0 1
100 93.4 1 2.0 1 1.6 1 1.2 2.6 1 2.0 1
200 51.0ol 6.9 3.8 8.81 3.01 1.5 1

1 600 47.9 17.9 1 9.0 1 13.9 1 7.3 3.81
1200 44.4 1 10.5 1 9.9 1 4.2 1 6.1 1 7.8 1

50,000 44.5 I 8.0 1 4.5 1 10.1 1 10.5 1 5.3 I
100,000 I 46.4 9.6 I 1.8 1 16.4 1 10.0 5.0 1
500,000 1 43.3 1 9.8 1 7.2 I 13.2 1 5.1 1 3.6 I

2,500,000 1 45.4 1 12.8 1 6.1 1 4.8 I 7.4 1 10.3 1

AD-All 963 GEORGIA INST OF TECH ATLANTA SCHOOL OF INFORMATION A--ETC F/B 9/2
PERFORMANCE OF DISTRIBUTED AND DECENTRALIZED CONTROL MODELS FOR--ETCU)
MAY 82 P H ENSLOW. T G SAPONAS F30602-78-C-0120

UNCLASSIFIED GIT-ICS-B1/09 RAOC-TR-82-105 NL

220000000[lfl 1N

Appendix 2 SIMULATION RESULTS Page 91

2.2.2 XFDPS.Z

UNIDIRECTIONAL RING

Ave
1 Response Average Length of the READY QUEUE

Bandwidth 1 Time on Each Node
(bytes/see) (sec) 1 1 2 1 1 4 5

50 1 210.3 1.0 1 2.8 1.9 1 1.0 1.0
100 1 103. 1 1.7 4.1 2.0 1 1.6 1 1.5
2001 53.71 1.91 3.41 2.61 3.41 3.91
6001 41.31 9.91 7.71 3.4 110.7: 4.21

1200 47.1 1.8 1 12.3 1 20.4 1 3.1 1 2.7 1
50,000 44.9 4.5 4.5 1 15.9 1 11.7 1 4.5
100,000 47.4 2.5 1 2.9 1 19.3 1 12.2 1 3.7

I 500,000 1 49.4 1 3.2 1 7.0 1 9.2 1 19.6 1 2.1 1
2,500,000 45.4 1 8.0 1 5.9 1 4.2 1 7.0 1 16.4 1

BIDIRECTIONAL RING

Ave I
1 Response Average Length of the READY QUEUE 1

Bandwidth Time on Each Node
(bytes/see) I (sec) 1 2 1 , 4 5 JI I

50 93.3 1 1.1 1 1.2 I 2.5 1 1.6 1 1.3 1
100 63.1 1 1.7 1 6.3 1 16.2 1 4.9 1 1.1 1
200 48.1 1 6.6 1 9.7 I 3.4 1 4.7 1 14.4 1
6001 41.51 7.31 7.9 1 7.0 110.2 1 3.91
1200 43.1 1 3.2 1 5.0 1 5.7 1 5.1 1 18.7 1

50,000 41.7 1 4.6 1 16.9 1 4.2 1 5.2 1 9.8 1
100,000 43.1 1 2.8 1 11.9 1 8.3 1 5.1 1 11.5 1
500,000 1 44.0 1 12.7 1 8.8 1 5.7 1 4.5 1 7.0 1

2,500,000 1 51.3 1 4.4 1 3.7 1 13.3 1 19.2 1 4.3 1

STAR

I e I

I Response I Average Length of the READY QUEUE 1
Bandwidth I Time on Each Node
(bytes/sec) (sec) 1 1 1 2 1 1 1 4 I 51 1 I I I I

50 1 58.7 1 1.8 1 3.4 I 1.7 1 2.2 I 1.9 1
1001 43.01 3.7 1 7.31 9.5 1 6.6 1 2.91
2001 45.0 1 3.2 1 5.6 1 5.4 1 17.9 1 4.61
6001 45.4 1 5.2 1 18.8 1 5.9 1 4.6 1 5.81
1200 1 41.9 I 9.7 I 13.1 1 3.8 1 5.5 1 5.0 1

50,0001 43.51 4.3 20.1 3.3 '4.3 4.91
100,000 I 45.9 I 3.5 1 10.7 1 17.1 1 5.6 I 4.4 1

1 500,0001 46.2 1 5.3 1 6.2 1 4.8 1 20.7 1 4.91
I2,500,000 1 40.9 1 1.9 1 8.4 3.0 1 20.9 1 4.61

I

Page 92 SIMULATION RESULTS Appendix 2

FULLY CONNECTED NETWORK

Ave '
Response Average Length of the READY QUEUE I

Bandwidth Time on Each Node
(bvtes/sec) 1 (see) 1 1 2 1 I 4 1 5

'I I
50 47.61 2.31 5.8 1 2.41 2.8 1 2.2 1

100 51.4 3.3 1.7 I 7.4 14.4 1 12.7 1
200 47.0 3.4 19.3 10.3 4.11 2.51
6001 42.91 2.21 8.8 1 6.01 10.6 1 10.6 1
12001 46.3 9.21 7.41 3.7 4.3 17.3 1

50,0001 39.71 7.61 7.3 1 4.2: 4.4 1 12.6 1
100,000 1 38.2 1 5.9 1 18.3 1 3.8 1 4.1 1 6.6 1
500,000 1 46.1 1 9.2 1 13.8 1 4.6 9.2 1 3.21

2,500,000 49.2 20.3 8.0 1 3.8 1 6.7 1 2.8 1

TREE

Ave I I
Response I Average Length of the READY QUEUE 1

Bandwidth Time I on Each Node I
, (bytes/see) I (see) 1 1 2 1 3 1 4 1 5 1III I I I

50 132.7 1.0 i 1.0 1 1.2 1 2.2 I 1.0 I
100 i 66.0 1 1.5 I 5.5 1 2.1 1 1.5 1 1.1 I
2001 45.41 7.0 1 4.0 1 6.7 1 12.5 1 2.8 1
600 1 43.9 1 6.0 1 10.1 1 5.8 1 2.5 1 14.2 1

1200 1 45.5 1 11.1 1 5.2 1 10.6 1 8.8 1 4.6 1
50,000 42.0 3.5 1 10.9 1 12.5 1 6.8 1 4.8 1

i 100,000 1 42.1 1 6.8 1 7.2 1 17.3 1 7.1 1 3.0 1
500,000 1 45.6 1 18.3 1 6.0 1 2.9 1 9.1 1 3.41 1

2,500,000 1 48.2 5.1 I 7.1 I 1.9 1 24.2 1 2.9 1
2.2.3 XFDPS.3l

UNIDIRECTIONAL RING

I Ave '
I Response I Average Length of the READY QUEUE

Bandwidth 1 Time i on Each Node
(bytes/sec) I (see) 1 1 1 2 I 1 I 4 l 5 I

III

100 1 141.3 1 1.6 1 1.9 1 1.3 1 3.7 I 5.0 1
200 1 82.5 1 4.2 2.0 I 1.2 1 2.8 1 3.1 1
600 1 45.2 1 11.5 13.5 1 2.2 1 6.1 I 3.7 1
12001 43.6 110.41 18.8 1 3.4 1 2.0 1 3.61

50,000 1 39.11 7.6 1 4.2 1 7.3 1 9.0 1 9.91
100,000 1 43.5 1 13.0 1 5.4 I 12.2 1 4.6 I 3.4 1
500,000 1 45.6 1 14.5 1 8.1 1 2.4 1 2.7 I 11.6 1

2,500,000 1 45.2 1 2.8 I 7.2 I 5.6 1 8.2 1 16.2 1

t.

Appendix 2 SIMULATION RESULTS Page 93

BIDIRECTIONAL RING

1 Ave I
I Response Average Length of the READY QUEUE

Bandwidth I Time on Each Node
(bytes/see) I (sec) I _ 1 1 2 1 3 1 4 1 5' I I ' I

50 99.9 1.9 1 1.1 1.4 1 1.1 1 2.2 1
100 1 54.4 5.0 1 2.5 2.9 1 5.1 1 11.0 1
2001 45.9 1 19.1 1 2.6 6.4 11 3.81 4.9
6001 40.4 1 7.2 1 4.6 1 4.4 1 5.9 1 14.8 1
1200 1 49.2 1 11.7 1 12.3 1 6.1 1 7.2 1 4.4 1

50,0001 39.3 1.7 7.3 12.4 I 9.7 1 4.2 1
100,000 1 40.14 1 1.7 1 4.8 1 5.4 1 19.1 1 8.2 1
500,000 1 47.9 1 4.9 1 15.6 I 13.8 I 3.4 1 3.6 1

2,500,000 I 42.8 1 15.8 1 3.1 1 4.6 I 8.0 I 8.9 1

STAR

I Ave I
Response , Average Length of the READY QUEUE 1

Bandwidth I Time I on Each Node
*(bvtes/sec) L (sec) I 1- 1 2 1 3 I 1 I I
I I 1 1 I a I

50 1 114.5 1 1.6 I 1.9 1 1.0 I 1.5 I 1.6 1
1 1001 59.411 3.0 1 2.71 2.2 1 5.1 1 1.9 1

200 4 15.9 1 5.8 1 9.7 1 11.5 1 3.7 1 4.9 1
, 6001 39.9 110.6 1 13.61 5.2 1 5.0 1 2.8 1
1 1200 1 39.5 2.7 12.8 13.6 1 4.3 1 3.2 1
a 50,000 4 15.9 1 5.0 1 24.71 4.4 1 4.2 1 2.9 1
1 100,000 1 44.7 I 3.31 9.6 12.1 I 7.4 1 8.5 1
I 500,000 4.9 1 9.8 1 8.4 1 4.4 1 1.7 1 15.0 I
1 2,500,000 I 36.2 1 7.3 1 4.7 1 15.5 1 7.4 I 3.0 I

FULLY CONNECTED N TWORK

I Ave I
I Response I Average Length of the READY QUEUE '

Bandwidth I Time I on Each Node
•L(bLtes/sec) I (sec) L 1 1 2 I 3 .J L... 5.1SI I I I I

1 50 1 47.2 1 3.0 1 6.71 2.2 1 9.2 11.6 1
I 1001 42.8 1 3.51 5.5 1 6.5 1 9.6 1 8.11
1 2001 44 .5 3.817.818.5 12.2 1 6.4

, 600 1 47.2 1 14.2 1 7.3 111.21 3.4 i 4,.91
12001 45.1 1 13.4 11 16.7 13.6 1 2.4 1 4.11

50,000 1 39.9 1 4.9 1 22.4 1 3.9 1 3.5 1 4.0 1
100,000 1 36.3 1 9.0 1 6.51 6.71 7.6 1 5.91

, 500,000 1 43.1 1 4.1 1 11.1 1 13.0 1 7.4 I 3.5 1
1 2,500,000 1 43.6 I 4.4 1 7.4 1 17.9 1 4.1 1 5.21

I.

Page 94 SIMULATION RESULTS Appendix 2

TREE

I I 1 Ave I

Response 1 Average Length of the READY QUEUE
Bandwidth Time on Each Node
(bytes/see) I (see) I I I 2 1 1 J...JL15J

50I 1 I

50 154.6 1 1.0 I 1.1 1 1.2 I 1.0 I 1.0 1
100 95.1 1 1.0 1 1.4 1 4.5 1 1.2 I 1.0 I
2001 47.7 1 2.2 1 3.9 1 4.8 1 2.7 1 19.6 1
600 47.0 1 14.7 1 2.7 1 2.5 8.9 1 10.4
1200 1 45.7 1 10.1 1 9.2 1 5.5 1 9.7 1 8.0 1

50,000 1 43.9 1 4.6 1 9.2 1 4.6 1 16.2 1 5.1 1
100,000 1 43.3 1 9.4 1 8.0 1 4.4 1 6.7 1 10.1 1
500,000 1 45.0 1 10.1 1 6.0 1 6.8 I 4.3 1 11.4 1

2,500,000 1 43.8 I 3.4 1 10.7 1 12.3 I 7.0 1 5.9 1
2.2.4 T .S

UNIDIRECTIOIAL RING

Ave I I

1 Response 1 Average Length of the READY QUEUE 1
, Bandwidth 1 Time 1 on Each Node I
(bytes/see) I (1 1 4 I I
SI I I

1 50 1 111.4 J 2.5 1 1.0 1 1.2 1 1.5 I 1.4 1

1 100 i 63.0 1 7.81 2.21 1.3 1 2.4 1 2.9 1
1 2001 48.5 3.912.7 3.319.21 9.91

600 4 15.6 1 21.1 1 2.3 1 4.3 1 3.0 I 7.1 I
1 1200 1 48.3 1 4.2 3.1 115.2 1 14.2 1 3.2 1

50,000 1 45.2 I 10.51 5.01 14.81 4.01 5.71

1 100,000 1 48.1 1 6.2 9.01 8.1 1 5.2 1 14.31
I 500,000 1 46.3 I 5.3 1 8.2 1 6.6 I 16.3 1 4.9 1
, 2,500,000 1 44.4 1 6.9 1 5.1 1 11.2 I 9.4 1 6.5 I

BIDIRECTIONAL RING

I I Ave I
I Response I Average Length of the READY QUEUE I

I Bandwidth I Time I on Each Node
I(bytes/see) I (see) I 1 I 2 1 3 I 4 I 5 1
I I I I1I I
1 50 1 80. 1 4.4 1 I 1.7 1 1.9 1 2.8 1 1.5 1

100 1 56.2 14.4 11.2 16.5 12.8 1 6.8 1
200 1 19.1 18.5 14.3 12.6 13.9 1 2.3
600 I 114.9 1 9.5 1 6.0 1 1.9 1 11.1 1 4.9

I 1200 1 15.5 3.0 I 11.3 1 11.5 1 4.3 1 10.3
1 50,000 1 38.61 6.2 1 6.11 8.01 9.21 6.11
I 100,000 1 38.8 6.3 1 8.5 15.9 1 9.11 6.41
1 500,000 1 44.9 16.9 1 9.6 17.01 9.81 8.61

1 2,500,000 1 43.0 1 1.8 1 4.0 1 18.7 1 7.0 1 7.9

Appendix 2 SIMULATION RESULTS Page 95

STARI-
I Ave I

I 1 Response I Average Length of the READY QUEUE I
Bandwidth I Time on Each Node I

I (bvtes/sec) I (sec) I 2 I ' 1 4 1 5 t
,'I I 1 I I

50 I 125.0 1 1.1 I 1.6 I 1.3 1 1.3 1 1.3
100 1 64.7 1 4.8 I 4.0 1 4.2 1 1.7 I 1.9 1
2001 53.6 1 5.4 1 6.91 2.91 9.8 1 3.91

I 6001 46.2 1 6.1 1 7.01 5.51 8.1 1 8.31
12001 44.4 1 9.8 1 8.81 3.71 4.4 1 14.11

50,000 1 40.7 1 5.3 1 6.7 1 6.7 1 6.7 I 11.1 1
I 100,000 1 44.9 1 4.4 1 5.7 1 11.6 1 3.7 I 14.1 1
1 500,000 1 48.1 I 21.0 I 8.4 1 4.0 1 5.5 1 1.9 1
1 2,500,000 1 43.8 1 3.1 1 12.7 1 8.8 1 2.3 I 12.2 1

FULLY CONNECTED NETWORK

I Ave
1 I Response 1 Average Length of the READY QUEE I
1 Bandwidth I Time on Each Node
I (bytes/see) (sLeea)L i 1 2 I 1 -4 1 5 1

II I I I I I I

501 68.3 1 3.9 1 1.2 1 1.7! 5.4 1 3.5 1
1001 51.31 2.5 1 2.4 1 7.6 16.0 1 2.8 1
200 1 47.3 I 6.7 5.0 1 2.7 1 13.2 1 3.1 I
6001 47.4 1 21.7 17.5 1 3.61 2.51 3.6 1
12001 43.3 1 3.5 114.5 1 8.41 7.61 3.7 1

50,000 I 44.2 1 6.5 1 16.0 1 11.6 1 3.2 1 1.4 1

100,000 1 45.4 I 3.7 1 8.0 I 17.2 1 6.4 1 5.2 I
500,000 1 43.5 1 6.3 1 7.6 1 8.7 1 6.0 1 11.2 1

2,500,000 1 41.2 1 4.4 1 4.3 I 4.3 1 10.5 1 14.2 I

TREE

I I Ave I I
I Response I Average Length of the READY QUEUE I

1 Bandwidth I Time on Each Node I
L.(bytesisee) I (see) 1 I 2 I A 1 4 5 -
I I I 1

1 50 1 134.81 2.11 1.0 1.3 1.7 1.2
100 1 72.8 1 1.4 I 3.5 3.4 1 3.3 1 1.9 1

I 2001 52.21 7.3 1 6.0! 3.9! 3.5 1 3.1!
1 6001 45.8 5.418.419.9 15.2 1 3.71
I 1200 1 46.3 14.4 18.0 13.6 115.9 1 4.2!

50,000 ! 43.5 3.9 7.5! 12.3! 6.5 1 9.6 1
I 100,000 1 36.3 3.21 8.71 5.31 7.3 1 9.81
1 500,000 1 42.2 1 3.0 1 21.1 1 4.4 1 4.3 I 7.4 I
1 2,500,000 I 45.0 1 7.1 1 10.7 1 11.6 1 6.5 I 3.8 1

II -- - - - - - - . .---

Page 96 SIMULATION RESULTS Appendix 2

2.3 &

I. Average Work Request Response Time for
a Single Node Network

Average Response Time
Run (sec)

1 44.6
2 44.1
3 43.7
4 43.7
5 44.2

Mean: 44.1 seconds

Standard Deviation: 0.38

I 7r11 N 7L~
i"AT

,i v

Kf:",

* -;4A

Fla

'AM

V

